Page Links: First Previous 1 2 3 Next Last Index Page
M2dude 30th Sep 2010, 13:58 permalink Post: 499 |
Concorde Trivia Quiz.. The Answers
As promised here are the answers to our trivia quiz.
Quote:
As a total aside to all this (or me going off on a tangent yet again) the fuel tanks themselves were gently air pressurised above 44,000' to around 2.2 PSIA. This was to prevent the beginnings of any boiling of the fuel in the tanks, due to the low ambient pressure/high fuel temperatures, causing pump cavitation. (Boiling itself could not occur much below 65,000'). A small NACA duct at the right side of the fin was used to supply the ram air for tank pressurisation, the two vent valves in the tail cone, one per trim gallery, closing off automatically at around 44,000', the pressure being controlled by a pneumatic valve, with full automatic over-pressure protection. OK sorry guys and gals, back to the answers:
Quote:
Quote:
Quote:
Quote:
Quote:
Quote:
Quote:
Quote:
Quote:
I hope this quiz was fun and not too perplexing to any of you guys. Dude |
||||||||||
M2dude 2nd Oct 2010, 08:45 permalink Post: 508 |
CRON
Quote:
The Inner Elevon Light, plus 'PFC' red Master Warning is triggered by: a) The Green Flying ControlComparator b) The Blue Flying Control Comparator c) Either Comparator The correct answer is (b). Another flying controls question I can remember is: Outer Elevon Neutralisation is triggered at: a)Vmo + 10 KTS b)Vmo + 15 KTS c)Vmo + 25 KTS The correct answer here is (c). The pass mark in these exams was 75%, with penalty marking applied for any wrong answers. I always found the worst part was the fact that the exams were on a Friday afternoon after lunch Nick Thomas
Quote:
From what you said about the 'lady' being ahead of her time, I would certainly agree with you here; in my view she was generations ahead of everything else. nomorecatering
Quote:
Quote:
As far as ground school notes, mine are all out on long term loan (MUST get them back). The ground school are totally priceless and I am sure that there are many complete sets lying around in atticks/bedrooms/garages/loos etc. Dude Last edited by M2dude; 2nd Oct 2010 at 13:40 . |
||||||||||
M2dude 9th Oct 2010, 19:26 permalink Post: 540 |
DavvaP
Quote:
As far as ChristiaanJ's point about the Olympus; the only plans I ever saw were for the Olympus 593 Mk 622, which gave a thrust increase of around 4,000 lbs static thrust but retained reheat. I know there were definate plans for a larger diameter engine (not just the LPC) that would have naturally required a larger intake. As far as the intake irself went, believe it or not, the plan was to remove the rear ramp altogether. The 'B' would have been a hell of an aeroplane; but the 'A' was still absolutely amazing in any case. Dude |
||||||||||
M2dude 12th Oct 2010, 12:21 permalink Post: 562 |
Zimmerfly
I have to echo Landlady's comments. This has really been done to death in various forums (yawn!) , and people forget (or perhaps never knew in the first place) just how much vital work the captain in question did for the whole Concorde operation. (Including for example, personally negotianing with HMG regarding BA taking over the Concorde support costs etc, and forming and heading up the division that saw Concorde transformed from a loss making burden into a major profit centre for the airline). Also he was GM Concorde Division and not Chief Pilot. To answer Steve's original TECHNICAL question; you must remember that using fuel for trimming was to offset long term changes in the centre of lift and not any short term stabilty shifts during landing. (The combination of pilots and elevons coped with that quite admirably ). And around four tonnes WAS transfered into tank 9 after landing, in order to aid ground stability, particularly during disembarkation. landlady I hope you are having a great time sunning yourself ('aint jealous, honest ) and have a rum punch or two for me. V1...Oops This site you mentioned is definately worth a visit; there are some great images there. Dude |
||||||||||
M2dude 5th Nov 2010, 11:56 permalink Post: 663 |
I have to admit that some of the subsonic fuel burn figures for Concorde were truly eye watering, and without massive engine and airframe modifications there was precious little in service that could be done to improve things. Paradoxically improvements to the
supersonic
efficiency of the powerplant were easier to implement, and several modifications were implemented, tried or proposed to improve fuel burn:
Way back in the late 1970's we did a major modification to the intakes that increased capture area by 2.5% and gave us typically a 1.6% improvement in trans-Atlantic fuel burn, and although this was our biggest performance improvement modification, there were more: The famous elevon and rudder trailing edge extension modifications (that due to poor design, produced in later life the water ingress induced honeycomb failures) together with the re-profiled fin leading edge modification, I never saw the performance gains quantified (anyone have any ideas?). Can anyone here remember the riblet trial? In the mid 1990's Airbus supplied 'stick on' plastic riblets, applied to various areas on the under-side of the wing on G-BOAG. These riblets had very fine undulations moulded into the surface; the idea being that as the air flowed through and around the riblet patches, boundary layer turbulence, and hence induced drag would be reduced. Now, the performance gains (if any) were never quantified, mainly because the riblet patches either peeled off or the surface deteriorated with the continuous thermal cycle. (I was over in JFK when the aircraft first arrived after having the riblets fitted, and as the crew were trying to proudly show me these amazing aerodynamic devices, they were sadly embarassed, as several had dissapeared in the course of a single flight). There was one modification, proposed by Rolls Royce in the late 1990's that did have quite a lot of potential; this was to increase the engine N1 by around 1.5%. This would have had the effect of increasing engine mass flow and therefore reducing the drag inducing spill of supersonic air over the lower lip of the intake. Depending on the temperature, the performance gains were in the order of a 1.5% improvement in fuel burn at ISA Plus upper atmosphere temperatures ('normal' LHR-JFK) to none at all at significant ISA Minus temperatures (LHR -BGI). The modifacation had been trialed on G-BBDG before her retirement in the early eighties, and was proven in terms of performance enhancement and engine stability. In order to keep TET at the pre-modification level, there was a small increase in N2 commanded also. (The higher N1 required an increase in primary nozzle area, reducing TET). The main reason for the modification not being implemented was one of cost; The Ultra Electronics Engine Control Units were analog units, and the modification was a simple replacement of two resistors per unit. However because ultimate mass flow limitation was also controll by the digital AICU (built by British Aerospace Guided Weapons Division) the cost of getting a software update for this exremely 'mature' unit was found to be prohibitive. A certain 'brainy' SEO and myself were working on a modification to improve fuel burn on ISA minus sectors. The idea was to force the autopilot, in Max Cruise at low temperatures only , to fly the aircraft close to Mmo, rather than at Max Cruise speed of Mach 2 - 2.02; this would have given us gains of up to 1%, depending on the temperature. The basic electronics involved for the modification were relatively straightforward, but it was never pursued due to the complexity of dealing with temperature shears and the cost of certification. Dude Last edited by M2dude; 5th Nov 2010 at 15:49 . |
||||||||||
speedbirdconcorde 23rd Nov 2010, 17:16 permalink Post: 762 |
Gents and Gent'esses,
Regarding the rather important role of the elevons on Concorde where there any failures during her time in the skies ? regards, d |
||||||||||
ChristiaanJ 24th Nov 2010, 13:43 permalink Post: 764 |
Quote:
M2dude may already have the details of "where", "when" and "how many" at his fingertips. Otherwise a Google, with terms such as 'AAIB', 'DGAC', 'elevon failure' and suchlike in the query, should get you the answers. The failures were similar to the rudder failures: part of the trailing edge of an elevon parting company with the aircraft, noticeable because of vibration, but without dire consequences. CJ |
||||||||||
M2dude 26th Nov 2010, 08:47 permalink Post: 781 |
speedbirdconcorde
Quote:
Mr Vortex
Quote:
Quote:
Islander539 and ChristiaanJ The actions of Airbus at Filton are nothing short of disgusting. By 'removing the insulation' you will need to strip the cabin completely bare (seats, galleys, ceiling panels and all of the side-wall panels). They say that 'Filton was only ever going to be an interim home for Concorde', what total crap !! The idea is to 'cocoon' the aircraft 'until a permanent home is found'. I hope all readers here realise that this will involve BREAKING UP THE AIRFRAME to make it road transportable. The reasons that scarebus are giving for all this are vague and misleading, but here's my take. There are pressures around from various people and bodies 'to return a British Concorde to flying condition.' Now a lot (NOT ALL) of these people although very well intentioned are not that well informed and their wishes are not reasonably possible. But the pressures exist nonetheless, and scarebus will do anything to prevent this possibility, nomatter how unlikely, from being progressed. So we have G-BOAF, the youngest Concorde in the world, with the lowest airframe hours, in pretty good structural condition (she's suffered from being outside for 7 years, but nothing terminal) and actually in the hands of the dreaded scarebus (who would rather forget that Concorde ever existed, and was almost certainly the reason why they even noe exist). Doesn't take much working out now, does it? Dude |
||||||||||
Mr.Vortex 7th Dec 2010, 22:18 permalink Post: 840 |
Wow thanks a lot M2Dude for your diagram.
I'm wonder that did Concorde has a neutal of stable stability? Did the elevon work out the same job to produce the stability like the elevator and stabilizer? Also, I have read your post and wonder why when the temp fall below ISA-7, the AICU order the N1 to decrese? And the final question. In the early concorde, does the pilot has ability to select the amount of afterburn thrust by rotate the area knob is that right? and why the airline remove it? Thanks for your reply. Best Regards |
||||||||||
M2dude 8th Dec 2010, 18:05 permalink Post: 841 |
Landroger
Quote:
howiehowie93
Quote:
Quote:
Quote:
Tom355UK
Quote:
Jeepers Tom that is one hell of a question. Assuming there was a market for such a venture (personally not sure right now) I think you are looking at BILLIONS of $, and for this reason alone I think you'd find that a multi-national/continental effort would be required. There is little doubt that technology is not the major barrier here, but economics and political will. (Nice thought though, I do agree). As far as a powerplant goes, well the PW5000 is a really superb engine, although well down on the thrust requirement for an 'NG' SST. More likely I would have thought would be e development of the Olympus, there was/is still such an enormous amount of potential in this basic design. (But who knows, this is all pure speculation anyway). And have no fears about posting here Tom, most of us are quite happy to answer away (We've said before that there is no such thing as a stupid question; you are most welcome here ). DavvaP
Quote:
I am honoured to say that I was lucky enough to be onboard G-BOAF for that flight from LHR-BZZ and as far as I could tell, the liners had no impact whatsoever. One amusing part of the flight was when we deliberately allowed tank 3 to run dry and see just what the indicated fuel quantity was as #3 engine flamed out (we were subsonic at this point of course). The gauge slowly crept down (in order for the tank to to run dry, the tank 7 & 8 transfer pumps were switched off) and we all watched in eager anticipation/dread....... as the counters reached zero weeeeeee... the engine flamed out. I am being completely honest here, the engine wound down EXACTLY at ZERO indicated contents). Those 7 aircraft really did look magnificent I know, it was just sad as to the reason they were all lined up there. Mr.Vortex
Quote:
Quote:
Quote:
Best regards to all Dude |
||||||||||
CliveL 21st Dec 2010, 12:09 permalink Post: 919 |
quote: One has to remember that the aircraft is effectively statically unstable in pitch at approach speeds, so a pilot up-elevator input would soon be followed by a countering autostab elevon-down to contain the tendency to keep pitching up, and vice-versa.unquote
Sorry EXWOK, but I just don't agree that the aircraft was statically unstable in pitch at approach. When I think of the hours we put in trying to straighten that damned pitch curve! It WAS designed to operate with low CG margins on approach, and that meant that the elevator (elevon) deflection needed to trim any desired incremental 'g' was quite small. On the other hand the pitch inertia was high and the elevon moment arm low, so if you just applied the elevon needed for the final state the pitch response would have been pathetic. This meant that the elevon needed to be 'overdriven' to get the aircraft moving and then backed off to hold it to the desired final state. Maybe the apparent reversals you are seeing in the video come from this source. CliveL |
||||||||||
EXWOK 22nd Dec 2010, 18:20 permalink Post: 948 |
Superstab
Hazy recollection - effectively an additional autostabilisation input in the nosedown sense active at high alpha/low CAS.
Ultimately applied a further nose down elevon input (4 degrees????) if CAS was less than (140kts???? That's a VERY low speed). (Colloquially known as 'super-duper stab' on my course) It's many years now since my course, and that's the last time I saw this so I think I'm going to need help from a grown-up to come up with a decent answer. Last edited by EXWOK; 23rd Dec 2010 at 08:04 . |
||||||||||
CliveL 22nd Dec 2010, 20:13 permalink Post: 950 |
Quote:
To cover this case the 'superautostabiliser'was developed. It effectively restricts the rate of variation of incidence so that, if the pilot entered into an avoidance manoeuvre of sufficient magnitude to trigger the stick wobbler, i.e. about 1.5g, he would be able to recover easily without exceeding the maximum incidence demonstrated in flight (which was in fact slightly greater than the maximum steady incidence limit). This superautostab had gain scheduled against AoA and also included phase advanced pitch rate and speed terms. Finally, there was a 'yaw superautostabiliser which applied rudder as a function of lateral acceleration to restrict sideslip which (see below) could affect the maximum lift attainable. [Note that because of the dynamics of slender aircraft operating at high AoA it was readily possible to develop sideslip in a turn] Hope that is clear. Whilst talking about maximum lift etc. can I confirm the numbers quoted in an earlier posting for the start of vortex lift - about 6 or 7 deg AoA at low speed, and for the AoA at maximum lift - about 23 deg. This is where the pitching momemt curve vs AoA 'breaks'. It is not a stall in the conventional sense because of course the flow over the leading edge has been separated long ago. Instead it is the AoA at which the LE vortices become 'too big for their boots' and go unstable and 'burst'. This AoA is sensitive to sideslip and the leading wing half will go first. CliveL |
||||||||||
ChristiaanJ 22nd Dec 2010, 20:40 permalink Post: 951 |
Before adding my own little bit to Clive's earlier reply about the autotrim, I will try to explain, for those not fully familiar with the subtleties of automatic flight control, the difference between "closed loop" and "open loop".
Closed loop As an example, let's look (very simplified) at how the autopilot maintains a selected altitude. On the one hand we have the desired altitude as selected on the autopilot controller (here 40,000 ft). On the other hand we have the true altitude , as measured by the altimeter (let's say 39,000 ft). We subtract the two to obtain the altitude error (in this case 39,000-40,000=-1,000 ft). We 'multiply' the altitude error by a factor, the gain (for the discussion, let's assume this gain is 1 degree elevon per 1000 ft altitude error), and send the resulting elevon position command to the elevon. So, the elevon moves 1\xb0 nose-up, the aircraft starts to climb, the altitude increases and the altitude error decreases until it becomes zero, by which time the elevon position has also returned to zero. What we have now is a "closed loop" : any deviation from the selected altitude results in an elevon command in the opposite direction, until the deviation is again reduced to zero. Another commonly used term is "feedback" : any error is fed back in the opposite sense until it's reduced to zero. The significant figure here is the 'gain'. If the gain is too small, the autopilot response to a disturbance (say turbulence) will be sluggish ; the aircraft takes too long to return to the desired altitude. If the gain is too high, a small disturbance will cause the aircraft to start climbing too rapidly, and to overshoot the desired altitude, then descend to correct the new error, etc. In other terms, the control loop is no longer stable, but starts to oscillate. Both theory and practice show that the exact value of the gain is not all that critical, a few percent more or less do not markedly change the response of the loop. Note: a "closed control loop" as described above can be implemented in just about any way you like. It can be done purely mechanically, with a few clever clockwork mechanisms 'computing' the altitude error and controlling the elevator pneumatically or hydraulically. It's how the earliest autopilots worked. After that came electromechanical systems, analogue computers and then digital computers... but the principle has remained unchanged. Open loop As already described in earlier posts, the situation with the automatic trim is the opposite. We now need to compute a neutral elevon position from several data, such as Mach number or airspeed, but without any feedback as to whether our computations are correct. We're now working in "open loop". To complicate matters... that neutral elevon position is not a simple linear function of Mach and airspeed, but far more complex (see the earlier posted graphs). And because of the large response of the aircraft to small changes in trim, in particular in the transonic regions, those computations have to be far more accurate : a one degree error is simply not acceptable. In the end..... The AICS (air intake control system) also uses several "open loop" functions. The early development aircraft still had an analogue system, which proved all too soon to be inadequate, so, at a very late stage, it was replaced by a digital system (one of the rare digital systems on Concorde). The "open loop" functions of the autotrim system initially had the typical "a few" percent" accuracy of the other flight control systems, which, for the autotrim, also proved inadequate. We managed to "save the furniture" (as they say in French) by using 0.1% components in all the critical computing paths, so the autotrim computers remained analogue until the end. But, a slide rule is not accurate to 0.1%... So that's when I had to buy my very first pocket calculator. \xa342 at 1972 prices... just as well the firm paid. CJ |
||||||||||
EXWOK 22nd Dec 2010, 22:00 permalink Post: 954 |
superstab
CliveL -
Many thanks for the superstab explanation -it makes more sense as a manoeuvre-driven input than as low-speed protection as the conversion course implied. I'm trying to remember what drove the fixed nose-down elevon input at low CAS/high alpha which I alluded to earlier. Presumably it wasn't superstab but some other element of the autostab system; is NW1, Bellerophon or Brit312 able to help me out here? Last edited by EXWOK; 23rd Dec 2010 at 08:02 . |
||||||||||
Bellerophon 23rd Dec 2010, 03:11 permalink Post: 958 |
CliveL
A warm welcome to the forum, please keep your most illuminating posts coming! EXWOK
Quote:
Purely in the interests of historical accuracy, may I point out that I did once complete a load sheet on a charter flight, but this occasioned such ribald comments from the starboard side of the flight deck, accompanied by ill-suppressed mirth from the maroon Mafioso in the engine room, that I decided in future to delegate all further such calculations to the F/O. Merry Christmas to all Bellerophon |
||||||||||
CliveL 24th Dec 2010, 11:55 permalink Post: 984 |
Quote:
Happy Christmas to all CliveL |
||||||||||
CliveL 27th Dec 2010, 14:04 permalink Post: 1026 |
A pot pourri of responses after my Christmas reading!
Quote:
This actually is interesting in that the n umbers show one of the fundamental features that made the Ol 593 such a good choice. If you look closely at the TO and cruise values you will find that at TO the overall compressor pressure ratio is 13.5 the compressor exit temperature 460 degC and the turbine inlet temperaure is 1152 degC. In cruise the pressure ratio is 10.5, the compressor exit is 565 degC and the TET 1100 degC. Somebody, I can't find the exact post, was asking whether the elevated cruise total temperatures affected engine life, and here we see why this is so. As Christian said in another posting, when you compress air it gets hotter - from 21 degC to 460 degC at take off and from 127 degC to 565 degC in cruise. A fundamental limit on engine operation is the turbine entry temperature. Not only does it affect the maximum TO thrust you can get but also the continued exposure to cruise TETs has a very big effect on engine fatigue life, and engine manufacturers have shown extremes of ingenuity when developing new materials and ways of cooling the blades to increase allowable TET. The problem with supersonic operations is that you start from an elevated intake delivery temperature so that when the flow exits the compressor it is already very hot 565 instead of 460 to be exact. But the maximum temperature one can stand for fatigue reasons is limited, therefore the amount of fuel you can pour in must be limited also, and the thrust you can develop per pound of airflow is roughly proportional to the fuel input/temperature rise. To get any sensible cruise thrust then one must squeeze the cruise TET as high as you dare for fatigue reasons but also you need to keep the compression ratio down so that the temperature going into the combustion chambers is as low as you can get away with. This tend to drive engines designed for extended supersonic operations to having a low pressure ratio. This is against the trend in subsonic operations where compression ratios have been steadily increasing along with bypass ratios. The net result then is that the engine must be designed with a low OPR and must operate with cruise TET much closer to its TO TET value than would be necessary, or indeed desirable, on a subsonic design.
Quote:
Actually, here, as on some other apparent carry-overs, one should look at the equipment supplier rather than the aircraft manufacturer to trace continuity. Here we have Messier supplying Concorde's gear and Dowty (OK they are now part of Messier) supplying the A330. And having worked on both, I seem to remember that the means of doing the shortening are quite different.
Quote:
Yes, they both came out of the Bristol drawing office. One minor anecdote: the 'ramshorn' stick was a novelty to the Concorde flight test crews but they got to like it, or at least put up with it. All went well until it came to the time when Dave Davies, the ARB Chief Test Pilot, came to put his rubber stamp on the aircraft. Concorde's seats, just like those on your car, could be moved back and fore to get your legs on the pedals and up and down so you could see over the bonnet (sorry, instrument panel). The control column of course stayed in one place, so the relationship of the 'horns' to ones thighs varied with ones height. Andre Turcat was about 6ft 2in, Trubbie and the others of average height. The smallest regular pilot was Jean Franchi at, I suppose, about 5ft 7 or 5ft 8. No problems. But Dave Davies was short like me and he found that he could not get full back stick and full aileron because the ramshorn fouled his thighs. Consternation! Completely unacceptable! I don't know what arguments they used to convince him it was all OK really, but it got through certification. I would certainly be interested to learn from the pilots in this group as to whether it was ever a problem.
Quote:
I can't resist this one!. Has anyone ever noticed/wondered about the tiny bit of the outer elevon that has been chopped off? That was my first real input into the design as a young erk looking at variability of touchdown conditions and coming to the conclusion that if the pilot got into trouble and was trying to pick up a trailing wing with too much AoA as well then he was likely to hit the ground with the downgoing elevon. I persuaded my boss that this was so and we made a small adjustment. In self defence I am going to plead that this was well before the days of the Type 28 nozzle, so the issue of buckets contacting the ground first never came up!
Quote:
To the point where an American Airline maintainance engineer, watching a prototype taking off and with full benefit of being located strategically for maximum sideline noise, remarked on what he described as 'visible acoustic radiation' On another occasion, it was reputed that Stanley Hooker, watching a TO in the company of HRH the Duke of Edinburgh, remarked that "You know Sir that that noise represents less energy than it takes to boil an egg". to which he got the reply "Then I must congratulate you Sir Stanley, on producing so much noise for the expenditure of so little energy".
Quote:
There was an effect and in consequence the aircraft performance brochures were formally calculated for north/south flight. Pity really, it would sometimes have been nice to be able to fly guarantee performance demonstrations in the most favourable direction That's enough for today! CliveL |
||||||||||
M2dude 16th Jan 2011, 09:41 permalink Post: 1110 |
SpeedbirdConcorde
Hi again my friend. To further expand on CliveJ's superb explanation: Mechanical control inputs were fed to each of the 8 Powerd Flying Control Units (PFCUs), but in electronic signalling (either Blue or Green) these inputs were de-clutched at the PFCU input lever. When Fly By Wire' signalling is not available, the mechanical inputs (which as CliveL quite rightly points out) are driven by the Relay Jacks, now are locked to the input lever and can now move the input jack of the PFCU (known as the spool valve) and subsequently cause the PFCU to drive the control surface. (The body of the PFCU moved, the main jacks were attached at each end to structure and so obviously did not move). Hopefully this diagram will help visualising the process a little easier: The diagram shows Green & Blue hydraulics supplied but the electro-valves (opened by the respective FBW channel) are both closed. You can see that the mechanical input lever is 'locked' to the PFCU input lever which will drive the SPOOL VALVE directly. When FBW is enabled, either the Blue or Green (never both together) ELECTRO-VALVE are signalled open, the ensuing hydraulic pressure then pushing the input clutch upwards and disengaging the mechanical input. FBW demands are now fed to the respective SERVO VALVE which will hydraulically send the SPOOL VALVE in the desired direction. The Relay Jacks could be considered to be a little like a PFCU (you had 2 RJs per axix) but instead of the servo valves being driven by the FBW system they were driven by the autopilot and instead of driving a control surface, they drove the control runs. In manual flight the input spool was driven via a mechanical input lever, which would drive the RJ spool a little like Mech' signalling drove the PFCU spool. In A/P mode the mechanical input rod was de-clutched \xe0 la PFCU, but (and here's the clever part) this input was locked to the body of the Relay Jack which when it moved, drove the pilot's control in sympathy. (Control column, yoke or rudder pradals). As the respective control(s) was moved by the Relay Jack, the corresponding FBW position sensor (resolver) would change position and generate the FBW demand. (As the surface moved there was a feedback resolver at PFCU level). As far as the FBW channels themselves went; there were 2 electronic signalling modes, Blue and Green, sub-divided into 3 groups (Inner Elevons, Outer & Mid Elevons and Rudders). Each group was independently monitored, and a fault in say the Rudder channel alone, would result in the rudders ONLY changing lanes. NOW ( ), The normal control channel was BLUE, and if this failed you would drop the respective channel into GREEN and if this failed you would drop into MECH. The selector switches (1 per group) enabled you to select BLUE/GREEN/MECH in that order. If for some reason you were selected to GREEN, a failure of that signalling lane would not drop you 'up' into BLUE, but into MECH. Your switch would only be in this position if you'd had a problem with BLUE, however you would select this on pushback while you were testing the flying controls, otherwise you spent your whole life selected to BLUE. As far as BA went, I can never remember a time personally when all 3 groups dropped from BLUE to MECH, but very rarely you might get a fault that caused a single group to briefly drop to MECH. Just about one of the very few common mode failures to each of the 3 groups would be a failure of the respective FBW static inverter. This thing, which was rightly monitored up to the hilt, produced a 26 Volt 1800 Hz output. (1800 Hz was chosen as this is not a harmonic of aircraft mainline 400 Hz AC supply) Best regards Dude Last edited by M2dude; 16th Jan 2011 at 12:10 . Reason: Clarity; Oh for clarity |
||||||||||
M2dude 18th Jan 2011, 09:30 permalink Post: 1122 |
I so remember the BAe AST images from the 1980s, I always thought what a potentially nice looking aeroplane she was. I guess that vastly improving the L/D & T/W ratios could go quite a long way to improving the operating economics, but the noise issue was always going to be the crippler. (I know that they were looking at a 'leaky' version of the OLY593, ie. a very low bypass ratio, but this of course would still not really cut the mustard as far as noise goes). I guess there are no current takers then
Clive, you really surprise me when you say you don't think that composites would be used from a future SST, is there a material reason for this? (I'm curious because being of a simple avionic brain, I always assumed composites would be used. But if anyone knows this stuff, you certainly would Clive ). To answer Mike-Bracknell's original query, as far as avionics goes we can really go to town. For her age Concorde had some truly amazing aircraft systems, for instance the flying controls. To enable mechanical control (both FBW channels failed) there was a highly complex and heavy mixing unit under the rear floor. (To mix pitch and roll pilot mechanical demands into differential elevon demand inputs). This of couse would have to be done away with, as well as the relay jacks and replaced with a pair of side-sticks. (See posts on previous page). A 2 crew operation would obviously be the way to go, but neither desirable or possible in my view when Concorde was designed. A triplex or quadruplex flying control system (possibly even integrating autoflight) would replace the Concorde collection of several analog boxes with a very small handful of lightweight digital units.. The powerplant control will have major weight savings, just take a look at this lot. 8 Engine Control Units, 4 Bucket Control Units, 2 Nozzle Angle Scheduling Units, 4 Reheat Amplifiers, 8 AICUs, 4 Air Intake Sensor Units and a single Air Intake Test Unit could potentially be replaced by just 4 multi-channel EEC type units. (On subsonic aircraft the EECs are mounted on the engine itself, not sure if that's a good idea for an SST, given the operating environment. Air Data and Navigation systems take a major simplification and weight saving, the 3 INUs and 2 ADCs (All of them straight from the 'rent a hernia' store as far as weight goes), could be replaced by a single ADIRU and a SAARU. The fuel indication/management side of things (2 FQI packs, 2 level switching packs and 3 CG computers) would probably be replaced by a single Fuel Processing unit. Ahhhh perchance to dream Best regards Dude |