Page Links: First Previous 1 2 3 Last Index Page
ChristiaanJ 26th Jan 2011, 20:49 permalink Post: 1141 |
Thanks,
Dude
,
I've seen her only a few times.... first when she was parked close to the "crossing", then at the location where she's now back again. What's struck me every time was seeing the elevons "up", rather than drooping.... makes her look as if she's ready to taxy..... CJ |
||
M2dude 24th Apr 2011, 14:09 permalink Post: 1331 |
I personally doubt very much if the Emergency Pilot would be the 'way in' for the sidestick input. EFC
ROLL
commands were inputed from the SFC computer to the Autostab computers as 'stab demands' and therefore drove the MIDDLE and OUTER elevons only for roll. To make matters worse, if your test flight was really 'exciting' and you found yourself at any time at Vmo + 20 KTS, roll control would be through the middle elevons ONLY. I'm with CliveL in that the most likely scenario would be for the demand would feed via a D/A converter somehow. (It would be great to find out though).
I would have thought that the whole venture was a proof of concept by SFENA for future implementation in the Airbus family. This excersise would have been both costly and highly complex at system level, any other reason would really have been quite daft. Best Regards Dude Last edited by M2dude; 24th Apr 2011 at 15:08 . |
||
M2dude 25th Apr 2011, 06:54 permalink Post: 1335 |
gordonroxburgh
Quote:
The limited authority for roll autostabilisation (and hence Emergency Flight Control) was of course a very deliberate piece of design. (You could test the Emergency Pilot on the ground at ADC Test 2 (Which simulated several seperate overspeeds, including Vmo +20) and when you put in a roll demand (against some resistance), only the MIDDLE elevons deflected. It really looked wierd on the ICOVOL as well as outside the aircraft. (To any chaps or chapesses who are not aware, above Vmo+20 KCAS, a system known as OUTER ELEVON NEUTRALISATION was invoked, where any input demand to the outer elevons was met by an automatic equal and OPPOSITE input, that of course completely neutralised the demand, giving a zero OUTER elevon deflection). Best regards Dude |
||
CliveL 21st Jun 2011, 06:14 permalink Post: 1385 |
Thanks for that much better picture Bellerephon.
I have a bit more information now, although my French is very rusty so I may not have it all correct - CJ can probably correct me if necessary. They did 8 flights over 10 hrs, preceded by about 30 simulator 'flights'. Most of the flight testing was looking at low speed behaviour, since that was where they expected to see most gains on Concorde, and where the most problems might be expected, but they did go up to 2.04M. The primary advantage was seen to be the possibility of using very aft CGs for takeoff to reduce trim drag - they flight tested as far back as 56% at around 0.4M (no consideration of limits from U/C location of course for this sort of testing). In addition they were predicting a weight saving of around half a tonne. The simulator work sorted out the basic laws, where they tested a pure pitch rate feedback and a C* law with load factor and pitch rate terms. The pilots preferred the latter (which became in time the basis for the A320 laws). The simulator was also used to establish the best ergonomics (movement and force harmonisation) of the sidestick. The 'blue' electrical signalling system for elevons was replaced by the digital control and sidestick arrangement, keeping the 'green' signalling as a safety backup. Normal rudder control system was retained, as well as the mechanical backup. In the general arrangement of the digital control system one can see clearly the genesis of the A320 design - two computers with the software written by separate teams etc. Pilot reaction seems to have been very favourable, the aircraft being somewhat easier to fly than the basic Concorde (which was already pretty good ....). In particular the paper suggests that the precision with which the aircraft could be positioned was much improved. Stick force per 'g' was pretty much the same throughout the speed range at about 7daN/g, whereas on Concorde it varies from 20 to 40 daN/g - but on a sidestick rather than a control column of course. One problem that did show up, although not peculiar to Concorde, was the sensitivity of these systems to structural response, particularly during ground roll. Not contained in the report, but in a side letter from Dudley, is a remark that the guy most responsible for the development of the Concorde basic system and later in charge of the Airbus system thought that these Concorde experiments were the key to the success of the A320. 'Nuff said! CliveL |
||
M2dude 21st Jun 2011, 15:45 permalink Post: 1388 |
A Side Sticky Subject
As I recall, they referred to this research project as a CCV (Controlled Configured Vehicle) design study. It would be great if we could get this confirmed, but they talked about subsonic drag reductions of 10 to 15% by flying (not taking off!!) with a far more aft CG than the norm. The 'system' I seem to remember, as a result naturally commanded some down elevon, which increased lift. As the aircraft could then fly with less alpha, I guess this is where the drag reduction comes from. (Clive, I wonder if you could find out through one of your contacts if this was true?).
I'd still personally like to know how the sidestick was integrated into the flying control system, I've been thinking and can not now believe that sidestick inputs could be simply input to the flying control system 'at resolver level'. Remember that the concept of the FBW system on Concorde was that resolvers were utilised as simple 4 wire synchros, and the pitch and roll axis utilised a CX/CDX/CT chain, which produced the error signal to the ESA's in the Autostab computers. Using a sidestick completely breaks up the chain, and my guess is that a seperate digital unit contained the flight rules which were summed against PFCU CT position and sidestick input would have been necessary. It is possible then that an analog output from this 'box' could be fed to the Autostab Computer ESAs and hence drive the elevons. I'm probably completely wrong, but I'd surely still love to know the truth. As you say Clive, ideal stuff for Concorde 2. Best regards Dude Last edited by M2dude; 21st Jun 2011 at 18:53 . Reason: A fine wine may improve with age... my spelling however doesn't |
||
CliveL 21st Jun 2011, 18:50 permalink Post: 1389 |
Don't need no contacts Dude. The drag reduction came simply from flying at a lower AoA when trimmed at an aft CG. Less 'up' elevon, which is similar but not the same as 'down elevon' in an absolute sense, so less adverse elevon lift and work the wing to a lower AoA in consequence. Just an extension of the basic Concorde certification with a 'point' TO CG really.
They were certainly looking to study control laws that allowed flight at very aft CGs to increase aircraft performance, so yes, this was a CCV exercise, but they were also seeking experience with digital control and system architectures that could be transferred to other active control applications. The 'sidestick' arrangement was virtually a complete A320 style arrangement using two computers and digital signalling throughout. For just 10 hrs they wouldn't need anything more complicated than a 'panic switch' to return control to the standard Concorde green system that was still there and available. Clive |
||
M2dude 21st Jun 2011, 18:55 permalink Post: 1390 |
Thanks for the info Clive, now all is explained. (And I take your point about the elevon deflection).
Best Regards Dude |
||
gordonroxburgh 29th Jul 2011, 22:30 permalink Post: 1411 |
The secondary doors across the whole fleet had lots of issues over time. Like the elevons, rudders and belly panels they were made of a honeycomb lattice structure that eventually dis-bonded causing a lot of overhaul stress in the workshops.
I think it would be fair to say that it would be a freak of nature if any of the aircraft actually had the same doors fitted that they left the factory with! |
||
M2dude 1st Aug 2011, 17:45 permalink Post: 1415 |
gordonroxborough
Quote:
whenrealityhurts
Quote:
Galaxy Flyer has made a large number of very valuable contributions to this thread and as an ex C5A pilot and highly experienced aviator deserves infinately more respect than you. As far as any bannings here, well look in the mirror fella, and I suggest that you restrict your postings to something that you maybe have some expertise. (Is there a section here on paper aeroplanes maybe?). Regards (particularly to you GF) Dude Last edited by M2dude; 4th Aug 2011 at 18:40 . |
||
NHerby 8th May 2013, 16:05 permalink Post: 1714 |
For the french speaking (or reading) people here, I just found a mine of very interesting informations about Concorde on this website:
Accueil This site has a database of thousand of concorde flights with the following datas: Date and time of the flight, airframe used, technical and commercial crews, guests, departure/arrival airports and flight type (regular, charter world tour...). On top of that, many infos and stories around Concorde can also be found there. I can't resist to translate one of those stories (I'm far from being a native english speaker or a professional translator; so forgive me for the misspellings and other translation mistakes). It is a report about one of the biggest incident that happened to the prototype 001 during the flight tests: Shock of shockwaves We were flying with Concorde at Mach 2 since 3 month already on both side of the Channel. The prototype 001 did outstrip 002 which was supposed to be the first to reach Mach 2. Unfortunately, a technical issue delayed 002 and Brian Trubshaw fairly let Andr\xe9 Turcat be the first to reach Mach 2 with the 001 which was ready to go. The flight tests were progressing fast and we were discovering a part of the atmosphere that military aircrafts hardly reached before. With Concorde, we were able to stay there for hours although limited by the huge fuel consumption of the prototypes. The Olympus engines did not reached their nominal performance yet and, most of the time, we had to turn on the reheat in supersonic cruise to maintain Mach 2. The reheat is what we call afterburner on military aircrafts. Fuel is injected between the last compressor stage of the low pressure turbine and the first exhaust nozzle. This increases the thrust for the whole engine and its nozzle. The 4 reheats, one for each engine, are controlled by the piano switches behind the thrust leavers on the center pedestal between the two pilots. Air was fed into the engines through 4 air intakes, one for each engine, attached 2 by 2 to the 2 engine nacelle, one under each wing. The advantage in terms of drag reduction was obvious. However, tests in wind tunnel showed that, at supersonic speed, if a problem happens on one engine, there was a great chance for the adjacent engine to be affected as well by the shockwave interference from one air intake to the other despite the presence the dividing wall between the two intakes. So we knew that an engine failure at mach 2 would result in the loss of 2 engines on the same side, resulting in a lateral movement leading to a strong sideslip that would likely impact the 2 remaining engines and transform the aircraft into the fastest glider in the world. This is why an automatic anti sideslip device was developed and installed on the aircrafts. The air intakes are very sophisticated. At mach 2, it creates a system of shockwaves that slows down the air from 600 m/sec in front of the aircraft to 200 m/sec in front of the engine while maintaining a very good thermodynamic performance. In supersonic cruise, the engines, operating at full capacity all the time, were sensitive to any perturbation and reacted violently with engine surge: the engine refusing the incoming air. Stopping suddenly a flow of almost 200kg of air per second traveling at 600m/sec causes a few problems. As a result, a spill door was installed under the air intake and automatically opened in such event. To control the system of shockwaves and obtain an efficiency of 0,96 in compression in the air intake, 2 articulated ramps, controlled by hydraulic jacks, are installed on the top of the air intakes in front of the engines. Each ramp is roughly the size of a big dining room table, and the 2 ramps, mechanically synchronized, move up or down following the instruction of an highly sophisticated computer that adapts the ramp position according to the mach number, the engine rating and other parameters such as skidding. At that time, it was the less known part of the aircraft, almost only designed through calculation since no simulator, no wind tunnel, did allow a full scale test of the system. The control of the system was analog and very complex but it was not easy to tune and we were moving ahead with a lot of caution in our test at mach 2. On the 26th of January 1971, we were doing a nearly routine flight to measure the effect of a new engine setting supposed to enhance the engine efficiency at mach 2. It was a small increase of the rotation speed of the low pressure turbine increasing the air flow and, as a result, the thrust. The flight test crews now regularly alternate their participation and their position in the cockpit for the pilots. Today, Gilbert Defer is on the left side, myself on the right side, Michel R\xe9tif is the flight engineer, Claude Durand is the main flight engineer and Jean Conche is the engine flight engineer. With them is an official representative of the flight test centre, Hubert Guyonnet, seated in the cockpit's jump seat, he is in charge of radio testing. We took off from Toulouse, accelerated to supersonic speed over the Atlantic near Arcachon continuing up to the north west of Ireland. Two reheats, the 1 and the 3, are left on because the air temperature does not allow to maintain mach 2 without them. Everything goes fine. During the previous flight, the crew experienced some strong turbulence, quite rare in the stratosphere and warned us about this. No problem was found on the aircraft. We are on our way back to Toulouse off the coast of Ireland. Our program includes subsonic tests and we have to decelerate. Gilbert is piloting the aircraft. Michel and the engineers notify us that everything is normal and ready for the deceleration and the descent. We are at FL500 at mach 2 with an IAS of 530 kt, the maximum dynamic pressure in normal use. On Concorde, the right hand seat is the place offering the less possibility to operate the systems. But here, we get busy by helping the others to follow the program and the checklists and by manipulating the secondary commands such as the landing gear, the droop nose, the radio navigation, comms, and some essential engine settings apart from the thrust leavers such as the reheat switches. The normal procedure consists in stopping the reheat before lowering the throttle. Gilbert asks me to do it. After, he will slowly reduce the throttle to avoid temporary heckler. Note that he did advise us during the training on the air intake to avoid to move the thrust leaver in case of engine surge. As a safety measure, I shut down the reheat one by one, checking that everything goes fine for each one. Thus I switch off the reheat 1 with the light shock marking the thrust reduction. Then the 3\x85 Instantly, we are thrown in a crazy situation. Deafening noise like a canon firing 300 times a minute next to us. Terrible shake. The cockpit, that looked like a submarine with the metallic and totally opaque visor obviously in the upper position, is shaken at a frequency of 5 oscillation a second and a crazy amplitude of about 4 to 5 G. To the point that we cannot see anymore, our eyes not being able to follow the movements. Gilbert has a test pilot reaction, we have to get out of the maximum kinetic energy zone as fast as possible and to reduce speed immediately. He then moves the throttle to idle without any useless care. During that time, I try, we all try to answer the question: what is going on? What is the cause of this and what can we do to stop it? Suspecting an issue with the engines, I try to read the indicators on the centre control panel through the mist of my disturbed vision and in the middle of a rain of electric indicators falling from the roof. We cannot speak to each other through the intercom. I vaguely see that the engines 3 and 4 seem to run slower than the 2 others, especially the 4. We have to do something. Gilbert is piloting the plane and is already busy. I have a stupid reaction dictated by the idea that I have to do something to stop that, while I can only reach a few commands that may be linked to the problem. I first try to increase the thrust on number 4 engine. No effect so I reduce frankly and definitively. I desperately look for something to do from my right hand seat with a terrible feeling of being helpless and useless. Then everything stops as suddenly as it started. How long did it last, 30 seconds, one minute? By looking at the flight data records afterward, we saw that it only last\x85 12 seconds! However, I have the feeling that I had time to think about tons of things, to do a lot of reasoning, assumption and to have searched and searched and searched\x85! It looked like my brain suddenly switched to a fastest mod of thinking. But, above all, it's the feeling of failure, the fact that I was not able to do anything and that I did not understand anything that remains stuck in my mind forever. To comfort me, I have to say that nobody among the crew did understand anything either and was able to do anything, apart from Gilbert. The aircraft slows down and the engine 3 that seemed to have shut down restart thanks to the auto ignition system. But the 4 is off indeed. Michel makes a check of his instruments. He also notes that the engine 4 has shut down but the 4 air intakes work normally, which makes us feel better. After discussing together, we start to think that we probably faced some stratospheric turbulence of very high intensity, our experience in this altitude range being quite limited at that time. But nobody really believes in this explanation. Finally, at subsonic speed, mach 0.9, with all instruments looking normal, we try to restart engine 4 since we still have a long way to go to fly back to Toulouse. Michel launches the process to restart the engine. It restarts, remains at a medium rotation speed and shuts down after 20 seconds, leaving us puzzled and a bit worried despite the fact that the instrument indicators are normal. Gilbert then decide to give up and won't try to restart this engine anymore and Claude leaves his engineer station to have a look in a device installed on the prototype to inspect the landing gear and the engines when needed: an hypo-scope, a kind of periscope going out through the floor and not through the roof. After a few seconds, we can hear him on the intercom: "Shit! (stuttering) we have lost the intake number 4." He then describes a wide opening in the air intake, the ramp seems to be missing and he can see some structural damages on the nacelle. Gilbert reacts rapidly by further reducing the speed to limit even more the dynamic pressure. But we don't know exactly the extent of the damage. Are the wing and the control surfaces damaged? What about engine 3? We decide to fly back at a speed of 250 kts at a lower altitude and to divert toward Fairford where our british colleagues and the 002 are based. I inform everybody about the problem on the radio and tell them our intentions. However, I add that if no other problems occur, we will try to reach Toulouse since we still have enough fuel. Flying off Fairford, since nothing unusual happened, we decide to go on toward Toulouse. All the possible diversion airport on the way have been informed by the flight test centre who follows us on their radar. At low speed, knowing what happened to us and having nothing else to do but to wait for us, time passes slowly, very slowly and we don't talk much, each one of us thinking and trying to understand what happened. However, we keep watching closely after engine 3. Personally, I remember the funny story of the poor guy who sees his house collapse when he flushes his toilets. I feel in the same situation. Gilbert makes a precautionary landing since we don't rely much on engine 3 anymore. But everything goes fine. At the parking, there is a lot of people waiting for us and, as soon as the engines stop, we can see a big rush toward the nacelles of the right hand side engines. Gilbert and myself are the first to get off the plane and we are welcomed down the stairs by Andr\xe9 Turcat and Jean Franchi who came out from the crowd watching at the right hand side nacelle. They both behave the same way, with a slow pace attitude, the same look, a mix of disbelief and frustration. Andr\xe9 is the first to speak: "I can't believe we were not on this flight, really unlucky\x85". Yes, this flight was supposed to be just a routine flight\x85! The condition of the nacelle is impressive. We come closer and everybody move aside for us with a look of disbelief and respect as if we were hell survivors. The ramps of the intake 4, those 2 "dining tables", have completely disappeared leaving a hole where we can see the hydraulic jacks and the stub rod where the ramps were attached. Indeed, only the ramps were missing, apparently ejected forward which was unbelievable knowing how fast we were flying. The ramp slipped under the nacelle causing some damages on it and on the hood of one of the elevon's servo control. Fortunately, the control did not suffer any damage. What is left of the rear ramp seems to be blocked down inside the intake in front of the engine and we can see behind it the first blades of the compressor, or what is left of it, not much. The engine swallowed a huge amount of metal but no vital parts of the aircraft has been damaged, no hydraulic leaks, no fuel leaks. I remembered at that time the stories of some B58 Hustler accident where the loss of an engine at mach 2 almost certainly ended with the complete loss of the aircraft. Our Concorde has only been shaken. This incident strengthened the trust I had in this plane. And I was not unhappy to have experienced this ordeal, especially when I saw the frustration on the face of Andr\xe9 Turcat and Jean Franchi. But we had to understand what happened and how; and also why the ramp's fixing broke. It didn't take much time to get the answers. I unintentionally triggered the problem when shutting down the reheat of engine 3. The sudden stop of the fuel flow did of course stop the combustion and the back pressure behind the low pressure turbine. But, probably because of the modification made on the engine before the flight, the stop of the reheat has not been followed by the normal closing movement of the primary nozzle to compensate the pressure drop. So the low pressure turbine ran out of control, dragging down the low pressure compressor which reacts by surging. Despite the opening of the spill door, the engine surge led to a sudden movement of the shockwaves in the air intake creating a surge in the intake itself. A similar surge happened in the adjacent intake 4 followed by a surge of the corresponding engine. This caused an excessive pressure above the ramps and the fixings of the intake 4 did not hold. Since it was the first time we experienced a surge in the air intake, we had little knowledge of the stress it would create on the ramps. This led to miscalculation of the strength of the ramps's frames and they did brake. Another mistake: instead of installing the motion detectors on the ramp itself, to make the production easier, they have been placed on the arms of the hydraulic jacks. This is why Michel R\xe9tif thought that the position of the ramps were correct. The hydraulic jacks did not suffer any damage and were still working normally even if the ramps were missing. All the data recorded during this event helped us in redesigning the air intakes and the flight test program resumed three month later. After this, we deliberately created dozen and dozen of air intake surge to fine tune the way to regulate them with digital calculator this time. From now on, even if it was still very impressive, it was safe and their intensity was not comparable with what we experienced with the missing ramps. However, a french president may kept a lasting memory of this, much later, during a flight back from Saudi Arabia. This time, I was on the left side, Gilbert on the right and Michel was still in the third seat\x85 But that's another story. For me, the lasting impression of failing and being helpless during this incident made me wonder what a commercial pilot would have done in this situation. This plane was designed to be handled by standard commercial pilots and not only by the flight test pilots. At that time, I was interested in taking in charge the management of a training center for the pilots of the future Airbus's clients. This event pushed me that way and I made it clear that I wanted to add the flight training on Concorde in this project. This has been agreed and I did it. And the Concorde training program now covers the air intake surges and how to deal with them. Jean PINET Former test pilot Member and former president of the Air and Space Academy Last edited by NHerby; 9th May 2013 at 17:24 . |