Page Links: First Previous 1 2 Last Index Page
NW1 24th Jun 2011, 00:15 permalink Post: 1399 |
<<
I'm guessing you mean rate of climb rather than IAS?
>>
<<No, I meant the airspeed you'd be flying at while climbing (post takeoff)>> OK, then the answer to your Q's: Also what was the typical climb speed - At lift-off? About 200kts - Once 240 kts is achieved? 240kts - At minimum maneuvering speed at typical takeoff weight? Vla after takeoff was V2 until 15,000'. I.E. about 220kts - At MTOGW? V2 didn't vary much by weight Out of JFK we flew at Vmo once further than 12nms from the coast. Vmo=400kts IAS at low level. Out of LHR overland the IAS restriction was 300kts until past the speed limit point early in the SID - much less draggy than 250kts and hence better climb rates. But you'd quickly be released to get to 400kts (barder's pole) where it was designed to be flown. <<Why higher speed? That have to do with shockwaves and the resulting pressure distribution differences?>> The flight envelope was bigger and more complex than subsonic types: it was developed in flight test and probably had many considerations involved. I think someone posted it earlier in this thread in graphical form (from the flight manual) if you want to see it. In practice, you had to be aware of three basic parameters - IAS, Mach and CG position (the CG "corridor"). Once understood, it wasn't that difficult to keep up with it...and the IAS and Machmeters had barber's poles handily programmed to show the limiting values (including, cleverly, max temp on the nose Tmo=127 degrees celcius). Regarding climb rates - best ROC was at 400kts (MTOW) or 380kts (MLW). As speed reduced below that, drag increased and ROC reduced. At MTOW and 400kts you'd get about 4000fpm max dry power. At 250kts it was all noise and very few feet per minute - after noise abate procedures you had to lower the nose, just barely climb, and get IAS up toward min drag as soon as possible. With an engine failed go for 300kts minimum - Vmo as soon as you can. <<shockwaves and the resulting pressure distribution differences>> You had to avoid the "transonic" region due to these effects: maximum subsonic cruise was 0.95M due to the auto-stabilised flying controls become over-active as shockwaves started to "dance" around the airframe (usually asymmetrically). This calmed down by about 1.3M in the acceleration (when the intake ramps started to do their thing). To accelerate to 2.0M you needed reheat until 1.7M so you didn't hang around between 0.95M and 1.7M. FL260 was best for subsonic cruise because at that level 400kts IAS = 0.95M... Last edited by NW1; 24th Jun 2011 at 09:09 . |