Posts about: "Intakes" [Posts: 64 Pages: 4]

M2dude
13th Aug 2010, 18:53
permalink
Post: 4
Point taken GF, but it was discovered during development flying that that the Olympus 593 could be relit, given sufficient IAS, at almost any altitude within the normal flight envelope. The variable inlet would even be automatically scheduled, as a funcion of N1, in order to improve relight performance at lower Mach numbers. I certainly agree that you would decelerate and lose altitude fairly quickly under these conditions, however a multiple flame out was never experienced during the entire 34 years of Concorde flight testing and airline operation. There was, as a matter of interest an un-commanded deployment of a Concorde RAT AT MACH 2!! (The first indications of the event were when the cabin crew complained about 'a loud propeller sound under the rear cabin floor'. A quick scan of the F/E's panel revealed the truth of the matter). The aircraft landed at JFK without incident, and the RAT itself, apart from a very small leak on one of the hydraulic pumps, was more or less un-phased by the event. Although it sounds horrific, a prop rotating in a Mach 2 airstream, the IAS it 'felt' would be no more than 530 KTS at any time. The RAT was of course replaced before the aircraft flew back to LHR.
Not quite sure about your reference to the RAT on an F16 being Hydrazine powered; a Ram Air Turbine is just that, using the freely rotatting propellor to power hydraulics, electrics or both. Or do you mean the the F16 has an emergency power unit? Either way, it's fascinating stuff.
Yes, I do remember that the Germans used Hydrazine as a fuel during WW2: The father of one of our Concorde pilots was on an air raid to destroy one o the production plants there, this aviation business is such a small world.
M2dude
16th Aug 2010, 12:09
permalink
Post: 11
ChristiaanJ
Both A/C 214 (OAG) and 216 (OAF) were Variant 192 A/C (British Unsold A/C). 216 was later converted to a 102 (British Airways) Variant, where 214 more or less stayed as a Variant 192. I'm not disputing what you say about possible APU mountings (I guess it would HAVE to be at the front section of the lower cargo hold somewhere) but I for one have certainly never seen any evidence of them. I'm still trying to imagine where the air inlet and exhausts would have to be arranged, not to mention pneumatic services ducting/hydraulics. Wouldn't it be interesting to find out?
M2dude
19th Aug 2010, 11:16
permalink
Post: 25
Biggles78
Stupid, you? no way!! (Besides, I'm Mr Stupid of the aviation world, that's my title ). The thing is, out here in the world of flying machines, there are almost an infinite number of questions (and hopefully answers too). This applies to just about all aircraft from the Wright Flyer up!!.
Keep asking away, there are so many of us Concorde 'nuts' out here who are more than happy to help out/bore the socks off you.
Fuel burns: The problem was that when flying slow/taxying, Concorde was an extreme gas guzzler, even when idling each engine burnt around 1.1 tonnes/hour (so every 15 minutes after push back meant over a tonne gone). A typical taxi fuel would be around 1.4/1.5 tonnes, depending on the runway in use on the day. I'd have to leave it to some of my pilot/F/E friends to remember some of the specific fuel burns after take off etc, but I can at least give you some interesting consumption figures:
At the beginning of the take off roll, each engine would be burning around 21 tonnes/hour. (Made up of around 12 T/Hr dry fuel (Fe) and 9T/Hr afterburner (reheat to us Brits) fuel (Fr). As Fr was scheduled against Fe, as a function of inlet total temp (T1) by the time V2 was reached (around 220 KTS) the rising T1 has pushed the total fuel flow (Ft) up to a staggering 25 tonnes/hour/engine. As i've pointed out before in previous topics, although the afterburner only gave us a 17% improvement in take off thrust, it was responsible for around an 80% hike in fuel burn. (Hence that is whay it was only used sparingly). However when reheat was used for transonic acceleration, it used a dramatically reduced schedule (roughly a 60% rise in fuel flow) , so it was not quite as scary. The afterburner would be lit at the commencement of the acceleration (0.96 Mach) and cancelled completely at 1.7 Mach. After this time the aircraft would accelerate on dry power only up to mach 2 and beyond. (The cooler the temperature the quicker the time to Mach 2). On an ISA+ day, it sometimes felt that the aircraft was flying through cold porridge, and could take quite a while to get to Mach 2 after reaheat cancellation, where as on a nice ISA - day, she would go like a bat out of hell, and the AFCS would have to jump in to prevent overspeeds.
Before I hit some more numbers, let me say that with Concorde, TOC = TOD!! After reheat cancellation at Mach 1.7, the aircraft would be at FL 430. The aircraft would climb at an IAS of 530 KTS until Mach 2 was reached at fractionally over FL500. From then on the aircraft would cruise/climb as fuel was burnt, up to a maximum of FL600. On warmish days (eg. the North Atlantic) TOD would typically be around FL570-580. On a cool day (the lowes temperatures would of course be reached in the more tropical regions; the LGR-BGI sector encountered this), FL 600 would be reached easily and she would love to climb some more. BUT, the aircaft was only certificated to 60,000' with passengers onboard, for decompression emergency descent time reasons, and so we were stuck with it. The pity is of course, the fuel burn would have been improved, but we never were able to take advantage of this. On test flights however, the aircraft would routinely zoom climb to FL 630. On her maiden flight, aircaft 208 (G-BOAB) reached an altitude of 65000'; the highest recorded Concorde altitude was on one of the French development aircraft, which achieved 68,000'. On a technical point, the analog ADC's were 'only' calibrated to 65,000'.
Anyway, back to some figues; at Mach 2, 50,000', the typical fuel burn per engine would be around 5 tonnes/hour, falling to around 4.2 tonnes/hour at 60,000'.

THE NOSE You are quite correct in your assumption, there were two positions of droop: 5 deg's for taxi/take-off and low speed flight and 12.5 deg's for landing. The glazed visor retracted into the nose and could ONLY be raised once the nose was fully up, and had to be stowed before the nose could move down. There were 2 emergency nose lowering sysyems; one using stby (Yellow) hydraulics and a free-fall system. Free-fall would drop the nose all the way to 12.5 deg's, the visor free falling into the nose also.

Last edited by M2dude; 19th Aug 2010 at 12:40 . Reason: mistooks
M2dude
23rd Aug 2010, 13:20
permalink
Post: 80
The reason that #4 engine was limited to 88% N1 on take-off was an interesting one, down to something known as 'foldover effect'. This was discovered during pre-entry into service trials in 1975, when quite moderate levels of first stage LP compressor vibrations were experienced at take-off, but on #4 engine only. Investigations revealed that the vibrations were as the result of vorticies swirling into #4 intake, in an anti-clockwise direction, coming off the R/H wing leading edge. As the engine rotated clockwise (viewed from the front) these vorticies struck the blades edgewise, in the opposite DOR, thus setting up these vibrations. The vorticies were as a result of this 'foldover effect', where the drooping leading edge of the wing slightly shielded the streamtube flowing into the engine intake. #1 engine experienced identical vorticies, but this time, due to coming off of the L/H wing were in a clockwise direction, the same as the engine, so were of little consequence. It was found that by about 60 KTS the vorticies had diminished to the extent that the N1 limit could be automatically removed. Just reducing N1 on it's own was not really enough however; some of this distorted airflow also entered the air intake through the aux' inlet door (A free floating inward opening door that was set into the spill door at the floor of the intake. It was only aerodynamically operated). The only way of reducing this part of the problem was to mechanically limit the opening angle of the aux' inlet door, which left the intake slightly choked at take off power. (The aux' inlet door was purely aerodynamically operated, and diff' pressure completely it by Mach 0.93).

Last edited by M2dude; 24th Aug 2010 at 08:31 . Reason: A few corrections
M2dude
24th Aug 2010, 09:48
permalink
Post: 88
Biggles78
Quote:
M2 , it appears the tailwheel was, so far, the only "fault" in an otherwise extreme machine. Were there any other items like the tailwheel that were unworthy to be in her?
Does anyone have a tech drawing of the "sliding seals" used in the hydraulics. I have trouble visualising something that could withstand the 4,000psi pressure. Why was such a high pressure used? After all the control surfaces couldn't have required that much input to effect an authority movement. I understand it was also a special fluid that was used. Was this because of the pressure it was under or the temperature extremes?
The tailwheel design really was the one exception in poor design terms, but I'm sure that if the aircraft was doing what she should be doing right now, (you know routinely flying across the Atlantic and beyond, instead of languishing in museums), modifications would have finally put this particular malady to bed). In design terms, the rest of the aircraft was nothing short of a flying work of art, a masterpiece. Having said that though, personally I would rather that four rather than three hydraulic systems had been used. Originally there were four systems in the design, but the RED system was deleted, as it was felt to be superfluous. My own view is that this particular decision was total poppycock. Oh, and Green, Blue and Yellow hydraulic systems was something else that Airbus copied from Concorde.... although we ourselves pinched that idea off of the Comet ).
As far as the hydraulic expansion joints go, I will scour around and see if I can find a diagram for you. Try and picture two titanium (or stainless) tubes, on inside the other, with a sealed chamber being formed at the join. Inside this chamber were multiple lands fitted with special viton GLT seals. They did work incredibly well, although occasionally one of the seals gave out, and things got wet, VERY WET.
As far as the 4000 PSI hydraulic system, as EXWOK quite rightly pointed out, the loading on the flying control surfaces were immense throughout the whole flight envelope. (Picture alone just the T/O from JFK RWY 31L, where the aircraft is tightly turning and the gear retracting, all at the same time). As well as the flying controls and landing gear, you also had the droop nose to consider, four variable engine intakes as well as a couple of hydraulically operated fuel pumps. Oh, and in emergencies, a hydraulically driven 40 KVA generator too. The reason that 4000 PSI was chosen was that if a large amount of hydraulic 'work' was to be done, the only way to keep the size of jacks and actuators to a reasonable size/weight was to increase the system pressure by 25% from the normal 3000 PSI. (On the A380 they've gone a step further and gone for 5000 PSI, saving them over a tonne on the weight of the aircraft).
Concorde used a special hydraulic fluid, Chevron M2V. This is a mineral based fluid, as opposed to the ester based Skydrol, used by the subsonics. The reason that we went for a different fluid was a simple one; Skydrol is rubbish at the high temperatures that Concorde operated at, no good at all in fact, so we needed something better and in M2V we found the PERFECT fluid. As an aside, unlike Skydrol, that attacks paintwork, certain rubber seals, skin, EYES etc., M2V is completely harmless, wash your hair in it. (I did, several times when we had leaks. Thinking about it, maybe THAT is why my hair is such a diminished asset

EXWOK
It's so great having another of my pilot friends diving in to this post, welcome welcome
I remember the Mech' Signalling part of the air tests, my lunch has just finished coming back up thank you. (for interest chaps and chapesses, with mechanical signalling, using just the conventional control runs under the floor, there was no auto-stabilisation).

The artificialfeel system worked incredibly well I thought, I always found it curious that the peak load law in the computer was at the transonic rather that the supersonic speed range. It was explained to me long ago that this was because the controls really are at their most sensitive here, but at high Mach numbers are partially 'stalled out', due to shockwave movements along the surfaces, and were therefore less effective. (For this reason I was told, the inner elevons were so critical for supersonic control, being the most effective of all elevons at high speed).

To all , I forgot to mention in my previous post regarding the engine failure in G-BOAF in 1980; I remember an FAA surveyor, who was taking a look at the carnage within the engine bay, saying that in his opinion, no other aircraft in the world could have survived the intensity of the titanium fire that ensued. Analysis showed that the fire was successfully extinguished, possibly at the first shot of the fire bottle. This was a testament to the way that the Concorde engine bay could be completely 'locked down' when the fire handle was pulled, as well as to the way that the whole engine installation was technically encased in armour plate. To put all this in context, acording to Rolls Royce a titanium fire, once it takes hold, can destroy the compressor of a jet engine in four seconds.


Dude
M2dude
24th Aug 2010, 22:49
permalink
Post: 101
ChristiaanJ
aaah yes, Max Climb/Max Cruise modes. I'd not forgotten this my friend, I was going to say a few words about that in a future post, but maybe we can do that now. (And I'd love to hear more of your comments on this here too, ChristiaanJ). The intake and autopilot modifications were in a way complimentary it's true, but really dealt with separate problems, at least in my view:
The intake control unit software change (a change to the control law that limited engine N1 as a function of intake local Mach number, Mo, and inlet total temperature, T1) was able to put an absolute limit on aircraft achievable Mach number during Mmo overshoots, but it would not PREVENT Mmo overshoots occurring altogether, it was more of a safety brake. This particular overspeed problem manifested itself well before route proving, and in fact the intake system 'fix' resulted in the Thrust Auto Reduce System being deleted, electronic control boxes and all. The TAR system was fitted on all development aircraft equiped with the digital intake system, and it tried (in vain) to limit extreme Mach overshoots. The production aircraft retained the TAR wiring and locked out circuit breakers, as well as two vacant spaces on the electronic racks. The prime reason for all these efforts were that some of the rapid excessive Mach overshoots quite often drove the intake into surge; the modification to this N1 limiter control enabled engine mass flow to be controlled in such a way that these surges could be prevented during temperature shears. The aircraft Mach limit was an extremely useful fringe benefit.
The AFCS mode change from what was Max Op and Max Op Soft (always loved that name) to Max Climb/Max Cruise was at a stroke able to deal with the regular Mmo overspeeds that kept on occuring during, as you say, the route proving trials of 1975, when British aircraft G-BOAC and the French aircrfraft F-BTSD carried out pre entry into service evaluation flights, SD sadly was the aircraft that was tragically lost at Gonez in July 2000). The Max Climb/Max Cruise AFCS mode combo is a mode like no other that I've personally seen before or since anywhere, (it for instance resulted an elsewhere taboo; an autopilot and an autothrotte working together IN A SPEED MODE).
This problem encountered primarily at lower lattitudes, (for example, G-BOAC doing route proving flights out of Singapore), occurring initially as the aircraft reached Mach 2. It was termed 'the insurmountable problem', but the AFCS designers (such as ChristiaanJ) fortunately did not have 'insurmountable problems' in their vocabulary. The issue was that the aircraft would have been climbing rapidly at Vmo of 530 KTS, with throttles at the gate as usual, At exactly 50,189' we hit what was known as 'the corner point' in the flight envelope, where 530 KTS IAS equated to Mach 2 exactly. Max Op mode would then 'let go' of the Vmo segment, and try and control the aircraft to Mach 2. (As the aircraft climbed, Vmo itself would progreesively decrease in order to equate to Mmo, or 2.04 Mach). But in very cold conditions, the aircraft still 'wanting' to accelerate, and the simple Max Op/Max Op Soft modes just could not cope with gentle pitch changes alone. The problem became even bigger during the cruise/climb when severe temperature shears occured, and routinely regular Mmo exceedences occured. Something had to be done, and something WAS done and how; enter Max Climb/Max Cruise. It was really a classic piece of design, where the aircraft would do the initial supersonic climb in Max Climb mode. This mode itself was relatively simple, in that it was more or less a Vmo -Vc hold mode. That meant that the difference at selection between indicated airspeed, Vc and Vmo would be maintained, with a vernier datum adjust to this being available. In practice this mode was selected pretty much at Vmo, so datum adjusting was not always required. Now comes the clever part; the autothrottle, this would operate in standy mode at this point, just waiting there doing nothing, with the throttles at maximum as before. So the aircraft would now climb as Vmo increased to 530 KTS, and then following a now constant Vmo of 530 KTS until the magic 'corner point' (51, 189' remember). Now all hell would break loose; the mode would automatically change to Max Cruise, the autothrottle would also be automaically selected to Mach Hold mode (initially datumed here to Mach 2) and the throttles would retard, attempting to hold this Mach 2 datum, and the autopilot is commands a 'fly up' signal, over a 20 second lag period to 600'/minute. Now comes an even cleverer (?) part; the autothrottle Mach Hold datum is gradually increased over a 100 second period towards Mach 2.02, and so in stable conditions the throttles would now gradually increase again until they once more reach the maximum limit. At this point, the autothrottles now come out of Mach Hold mode and back into the waiting in the wings standby mode. The autopilot would now cancel it's 600' fly up, demand, returning to a datum of Mach 2. There was a little more complexity built in also, where the difference between the 'commanded' and actual vertical speeds offset the autoplilot Mach 2 datum. This would apply whether the autothrottle had cut in (+600'/min demand) or with the throttles back at maximum (0'/minute demand. A positive climb error tweaked the cruise Mach up slightly, a negative error (eg. in a turn) the converse was true. The effect of all of this complexity was that the aircraft itself could 'scan' until it settled at a point where the throttles could be at maximum, and the speed between Mach 2 and 2.02. On the North Atlantic, with warmer ISA temperatures, there was usually just the initial routine with the autothrottle as you hit the corner point. However at lower lattitudes (eg. LHR BGI) there could be a few initial autothrottle intercepts before things settled down. This whole incredible routine completely took care of the insurmountable problem, a problem that was shown not only to be insurmountable, but was put to bed forever, by people like ChristiaanJ.
I hope that my explanation here does not sound too much like gibberish.

EXWOK
I think you've guessed right as far as my identity goes; it's great that it's not just Concorde pilots I can bore the socks off now
PS. I bet the ex-SEOs LOVED your comments

Dude

Last edited by M2dude; 25th Aug 2010 at 01:14 . Reason: missed out some info' (sorry)
ChristiaanJ
25th Aug 2010, 22:17
permalink
Post: 122
Quote:
Originally Posted by DozyWannabe View Post
Any magnetic core memory in any of those systems?
I can't be positive about the INS (inertial nav system).
The prototypes used a SAGEM/Ferranti system, replaced by a Litton system on the preprods, then Delco on the production aircraft.
There may have been magnetic core in the prototype INS.

As to the AICS (air intakes) and AFCS (automatic flight control), the answer is a definite NO. The AICUs used PROMs (fuse type, not EPROM) and the AFCS was entirely analog.

Some of the systems were even more 'antique'...

The ADC (air data computer) for instance was still largely electro-mechanical.

And those nifty NAV and COMM frequency selectors, that always stand out on cockpit pictures... no electronics at all, just a set of wafer switches, and about thirty wires linking them to the transmitters/receivers.

CJ
M2dude
31st Aug 2010, 18:04
permalink
Post: 170
DozyWannabe
Quote:
Well, it was essentially a development airframe pressed into premature service for the sake of beating a western project into the air. One wonders whether the story would have been different if the designers had been allowed to take their time and develop it properly.
Good point I suppose, but you could say that the six Concorde prototypes, Pre-Production and Production Series Test aircraft were also development aircraft, and yet more or less worked just as it said on the tin', where the TU144, in spite of all the facilities of Andrei Tupolev's design bureaux, not to mention more or less unlimited Soviet state funds produced a machine that in my opinion really BELONGED in a tin can. (I know this is all off topic, honest guys, I won't mention this stuff again ).
In reality the Soviets really lacked both propulsion technology as well as the systems expertise required to build an aircraft with even a remote hope of Mach 2 cruise, let alone safe and comfortable enough for fare paying passengers. The original aircraft had all for engines in one giant nacelle, and the landing gear retracted into the engine inlet duct itself, great for an undistorted flow path to the engines . The variable inlets were manually operated by the flight engineer as well, no automatics here. In the mid 1970's the Russians even approached PLESSEY to build a digital engine control unit for the TU144. A similar PLESSEY unit had been VERY successfully flight trialled on production series aircraft 202 (G-BBDG) and only lack of funds prevented it being used on the production aircraft. As this unit could obviously be used for Soviet military applications, there was objection from the UK government, and more than just a little trans-Atlantic pressure applied, and so this venture never happened.
Quote:
Those "agricultural" fighters can mix it up with the best the west has to offer (until - or if - the F22 comes online) in terms of manoeuvering ability, if not in terms of weapons.
Until the advent of the Mig-29 and Sukhoi SU-27 this really was not the case. I'm afraid I'm with galaxy flyer on this; If you look at the air war over Vietnam, when an F4 met a MIG 19 or MIG 21 in an even air-to-air combat, the MIG was going down. (OK this could be partially down to superior US pilot traing etc, but if you look at the handful of skirmishes where the 1960's/1970's Soviet aircraft were engaged in Combat against US or French built fighters, the MIGs never really did very well at all). However, the aircraft that the Russians have been producing from the Mig 29 onwards seem to be in a completely different class now; hope they really are the good guys now.
ANYWAY, back on topic
Lurking SLF
No problem at all Darragh, please keep visiting us and post here also anytime.
Nick Thomas
Quote:
M2dude I have another question concerning "debow" You very clearly answered my original question on another thread. I just wondered how the engine was kept at a sub idle 30% N2? Was it done by careful metering of the fuel? and if not how was it done? I ask because the throttles would be closed during start up.
I'm not sure that I can describe the DEBOW process remotely as eloquently as my friend Bellerophon did, I particularly loved the 'out of balance tumble-drier' bit, but starting a hot or even warm engine, even at DEBOW, you could certainly 'feel' the noise on the flight deck, until the shaft distortions evened out.
Now for the PFM bit, equally eloquently alluded to by Bellerophon:
DEBOW itself was maintained by a special sub-idle datum in the electronic Engine Control Unit, and once the engine was accelerated towards normal idle (61-65% N2, depending on the temperature of the day) even if the switch described by Bellerophon was accidently re-selected, an electronic inhibit gate in the ECU prevented this sub-idle datum from being used again that engine cycle.
Quote:
Thanks for the explanation of how the pitch was "trimmed" Due to Concorde having elevrons instead of ailerons; was the aileron trim dealt with in a similar way? I guess the rudder trim could be applied normally.
You're welcome Nick, actually the roll and yaw trims operated in a similar manner to the pitch, although of course these was applied by a manual trim wheel only. (No French bike bell either ). Rotation of either wheel (more a giant knob actually) merely shifted the neutral datum of the relevant artificial feel unit, which in turn shifted the rudder pedals or control yoke; the resolvers for the FBW system would in consequence demand this 'trimmed' control surface movement.

Dude
M2dude
2nd Sep 2010, 23:55
permalink
Post: 192
Hi canuck slf, Your incident was not the hydraulic contamination one, I'll describe that one in a minute or so below.
As far as your adventure goes, in the early days of Concorde operation there was an on-going issue of hydraulic seal failures. This led to the sort of thing that you described, where a major seal failure would occur, resulting in the loss of a main system. The standby Yellow system would be switched in to replace the failed one, and depending on the nature of the initial failure, could leak out of the same failed seal. (There were a couple of 'common areas', they were the intake spill door jack, and the Powered Flying Control Units; failures here could result in a double system fail). Your incident was almost certainly due to one of these cases. In the early 1990's the original Neoprene hydraulic seals were replaced with a new Viton GLT seal; this material had far superior age shrinking characteristics to Neoprene, and more or less cured the problem overnight. Eventually all the seals in each aircraft were replaced, and apart from a very few isolated cases, dual system losses were eliminated forever. Air France suffered a similar proportion of failures, however as their flying hours were a fraction of BA's, the effects were not as immediately apparent.
As far as far as the hydraulic contamination story goes, this happened in 1980 but involved one aircraft only, G-BOAG, but in it's original registration of G-BFKW. (having previously been on loan from British Aerospace, where it flew originally as a 'white tail' under this registration). The fragile nature of Concorde hydraulic fluid was not fully understood at this time, and as you say, a hydraulic drum dispenser had inadvertently been left exposed to the atmosphere, and had subsequently suffered water contamination, and this contaminated fluid had found it's way into G-BOAG. Now this hydraulic fluid, CHEVRON M2V has only two vices: One is that is extremely expensive, and the second is that it is highly susceptible to water contamination, EXTEMELY SO. If my memory serves me correctly, the maximum allowable level of water in the fluid is about 8ppm. (parts per million) and the fluid that was analysed after G-BOAG's problems was at about 30 ppm. The water deposits in the fluid gave the equivalent effect of 'rusting up' of critical hydraulic components. I was investigating an air intake control defect the previous day to the incident, but like everybody else had no idea that the real issue here was one of major systems contamination. We were all convinced that we had nailed the problem, only to find that the aircraft turned back on it's subsequent LHR-JFK sector with more serious problems, not only affecting the air intakes, but the artificial feel system also. It was now that we realised that there had to be a hydraulics problem here, and after fluid analysis, the awful truth was discovered. After this event, and the fragilities of M2V fluid were better understood, a strict regime of housekeeping was put in place in terms of fluid storage, and no such incidents with BA ever occurring again. The aircraft itself did not fly again for nine months, all components that were affected were removed from the aircraft and completely stripped and overhauled. Also all of the system hydraulic lines had to be completely purged, until there were no further traces of any contamination. After the aircraft was finally rectified, she successfully again returned to service with her new 'BA' registration of G-BOAG. However the following year, during a C Check, it was decided that due to spares shortages, and the closure of the LHR-BAH-SIN route, there just was not being enough work for seven aircraft, and therefore G-BOAG would be withdrawn from service. (In terms of spares, BA at the time for instance only had six sets of aircraft galleys, as aircraft went in for C checks the galley was 'robbed' to service the aircraft coming out of it's own C check). The aircraft was parked in a remote hangar, and was only visited when a component had to be 'robbed' for another Concorde, and the aircraft soon fell into disrepair, was filthy externally and became a really sad sight. Many people (not myself I might add) were adamant that G-BOAG would never fly again. However, in 1984 things had really started to improve for Concorde, with the charter business increasing and the LHR-JFK route in particular becoming a staggering success. It was decided that OAG would be returned to an airworthy condition. In 1985, with a fresh new interior, and with the new BA colour scheme, she was finally returned to service; and remained as one of the mainstays of the fleet right up to the end of Concorde services in October 2003. She now resides at the Boeing Museum of Flight in Seattle. (I have particularly fond memories of G-BOAG; in a previous post I mentioned flying through an electrical storm in late 1991 over Saudi Arabia, while returning from BKK-BAH to LHR. What I forgot to mention was the spectacle of DOZENS of fierce fires burning on the ground, towards our starboard horizon. These were Sadams oil fires, still burning in Kuwait. It made a sombre contrast to the amazing electrical spectacle right in front of us).

As far as low speed flying control activity was concerned, this was a combination of the fairly flexible outer wing sections, being buffeted by low speed turbulence (the wing tip tanks 5A & 7A also being empty), as well as some autostab inputs. This was perfectly normal, and part of the design our aircraft. However the development aircraft had even more flexible outer wing sections, which used to almost straighten up in high speed flight. However due to fatigue concerns, external lateral stiffeners were added to the underside of the wings during production of the airline aircraft. (these can be easily seen from underneath the wings, just outboard of the nacelles). Unfortunately these external stiffeners also resulted in over a one tonne fuel penalty to the production aircraft, due to increased weight, as well as higher drag in a critical part of the wing aerodynamic surface.

Dude

Last edited by M2dude; 3rd Sep 2010 at 00:07 .
M2dude
3rd Sep 2010, 08:43
permalink
Post: 195
Nick Thomas
This of course is one for one of my pilot friends to answer properly again, but as galaxy flyer says, it's an 'eye to wheel' issue here when compared to other aircraft.
galaxy flyer
Again best answered by learned gentlemen such as my friends EXWOK or Bellerophon, but to the best of my feeble knowledge a resounding NO, at least as far as CRUISE flying was concerned. As the majority of the flight was carried out between FL500 and FL600 there was really no weather as such to avoid during supercruise. (As has been previously posted, at Mach 2 you would invariably be above FL500). Only at extremely low latitudes where the tropopause could theoretically extend up to around 70,000' was there ever any chance of seeing any cloud anywhere near your cruise altitudes. The only turbulence as such you would ever encounter was as the result of a temperature shear, but these never felt to be too much in the way of 'bumps' to me. And again, only at very low latitudes did you encounter severe shears anyway; anything encountered on the North Atlantic was generally very mild and civilised.
A CONCORDE PARADOX
The tropopause issue here is an interesting one, in that the coldest stratospheric temperatures we ever encountered were close to the equator, whereas the WARMEST temperatures possible are over the POLES , where the tropopause can be as low as 22,000'. This is just one of the many paradoxes involving Concorde, and the reason why the aircraft would never be routed over the poles, BECAUSE THE DARNED TEMPERATURES ARE TOO HIGH, in terms of the stratosphere. The result here would be that the aircraft is temperature (Tmo) limited all the time to 127 deg's C. (I previously mentioned in another post in this thread that only 5 deg's C above ISA, -51.5 deg's C, would mean Tmo being reached at Mach 2; any warmer and we HAD to slow down) The relatively high polar temperatures mean that we are unable to fly anywhere near Mach 2. Another paradox would then come into play, the slower your cruise speed, the HIGHER your fuel burn. It was originally proposed in the early 1970's that Concorde would fly from London to Tokyo, and the routing for that needed two things: It could not be polar, and possibly just as important , you required a refuel stop. The Soviet Union amazingly proposed granting a supersonic corridor over Siberia, refuelling at the Siberian city of Novosibirsk. This was hardly an ideal routing (definitely far from a great circle) but was arguably one of the very few that was possible at all. This by the way was not some early iteration of glasnost, but the Soviets fully expected that flying thoroughbred, the TU-144 (bad dude ) to be a success, and could compete side by side with Concorde.
ANOTHER CONCORDE PARADOX
If anyone wonders why when you flew faster you burned less fuel, it was primarily down to drag, actually a thing frighteningly termed as 'pre-entry spill drag'. As most people (???) are aware, the Concorde engine inlet utilised a series of carefully controlled and focused shockwaves to slow the air down entering the engine; in 14 feet of engine intake you lost in the order of 1,000 mph of airspeed! Now most of these different shocks varied with a combination of intake variable surface angle, intake local Mach number and also engine mass flow demand. However the oblique shock coming off the top lip of the intake produced a shock that varied with Mach alone, and would project downwards, just forward of the intake bottom lip. Due to the air downstream of this fairly weak shock still being supersonic, a measured amount of this air spills downwards, away from the intake. If you can possibly picture it, we have this wall of air spilling downwards over the lower lip of all four intakes, the combined effect of this supersonic forespill is a fair amount of drag. The faster we go, the more accute the angle of the shock and therefore the less air is spilled, and in consequence the lower the spill drag. Remembering that cool temperatures could produce a higher Mach number, temperature really could either be our friend or enemy, but cool was COOL
I hope this explanation does not sound like too much gibberish, but it really was a fact that 'More Mach = Less Fuel'. Hope it makes some sense.

Dude

Last edited by M2dude; 3rd Sep 2010 at 11:08 . Reason: clearing up some gibberish
M2dude
8th Sep 2010, 11:04
permalink
Post: 271
Ohhh.. and bits of Concorde on other aircraft etc:
The emergency generator (and generator control unit) were license built replicas of the units fitted to the F4K and F4M.
The air intake void (Pv) pressure sensor, built by Garrett Aireseach, was used in another 'case' as an inlet pressure sensor on the F14.
Carbon wheel brakes, pioneered on Concorde are now used by just about every modern commercial AND military aircraft. (Although originally trialled on a VC10 in a single brake installation).
(Already bleated on about Airbus pinching our audio warning tones etc).
The Triplex 10-20 glass, developed for and used on the visor panels were used in the automotive industry for many years to come.
I'm sure that there is stacks more.....

Dude
M2dude
2nd Oct 2010, 08:45
permalink
Post: 508
CRON
Quote:
If I may ask - and folk can recall - what would a sample question look like from these exams?
I can only speak here from the Concorde ground engineering school that I attended over a total of 13 weeks at Filton in 1980 and 1981; the pilot/flight engineer questions there were I'm sure FAR nastier (and also more operationally specific); we did get to share simulator time though, which was really useful. Like the aircrews, we stayed up in a hotel in Bristol during the week. (I personally had only left BAC, as it was then, for BA at Heathrow in late July 1977, so I was returning to familiar pastures). The exam format would be several dozen multi-choice questions per week/phase; a typical question would go something like:

The Inner Elevon Light, plus 'PFC' red Master Warning is triggered by:
a) The Green Flying ControlComparator
b) The Blue Flying Control Comparator
c) Either Comparator
The correct answer is (b).

Another flying controls question I can remember is:

Outer Elevon Neutralisation is triggered at:
a)Vmo + 10 KTS
b)Vmo + 15 KTS
c)Vmo + 25 KTS
The correct answer here is (c).

The pass mark in these exams was 75%, with penalty marking applied for any wrong answers. I always found the worst part was the fact that the exams were on a Friday afternoon after lunch

Nick Thomas
Quote:
So I have been wondering if there were any special procedures for managing the CofG in a rapid descent especially as there could also be many other factors needing the crews attention?
Hi again Nick, one really for the likes of BRIT312, EXWOK etc, but there was, as was mentioned before, an emergency forward transfer switch in the roof panel above the pilots (F/O's side if I remember correctly). When placed to the emergency poition two electric and two hydraulic fuel pumps for the rear trim tank #11 would start up automatically, as well as the forward tank inlet valves being opened also.
From what you said about the 'lady' being ahead of her time, I would certainly agree with you here; in my view she was generations ahead of everything else.

nomorecatering
Quote:
Are there any concorde simulators that are still working and retain their certification?
The BA simulator that resided at Filton has been re-located to Brooklands Museum, and has been re-activated, but without motion and I'm not sure about full visuals either. I've not seen it myself yet, but I'm told that things have progressed really well with the operation. Obviously it is no longer certified as an active simulator; I'm not sure about the situation in France, perhaps my friend ChristiaanJ can answer that one.
Quote:
Regarding LHR JFK routes. What was the avarage fuel load and how close to full tanks was it.
I seem to remember typical loads for LHR-JFK being around 93-96 tonnes, depending on the passenger load and en-route conditions. Full tanks, depending on the SG was around 96 Tonnes. High fuel temperatures in the summer were a major pain; restricting maximum onload due to the low SG.

As far as ground school notes, mine are all out on long term loan (MUST get them back). The ground school are totally priceless and I am sure that there are many complete sets lying around in atticks/bedrooms/garages/loos etc.

Dude

Last edited by M2dude; 2nd Oct 2010 at 13:40 .
Feathers McGraw
8th Oct 2010, 13:48
permalink
Post: 532
Thanks for those nozzle diagrams Dude, they are very useful to visualise what's happening.

I remember reading Stanley Hookers book "Not Much of an Engineer" (I know the feeling ), in which he explains how at Mach 2 the Olympus is only providing about 8% of the total thrust but then goes on to say that at the low speed end of the take-off run it was 100% of the thrust so his designers were not let off the hook. That falls to 82% in subsonic cruise.

Ah, found the figures for Mach 2, the inlet provides 63% of the total thrust, exhaust nozzles 29%. That certainly explains why the thinning and re-profiling of the inlet lip was so important to improving the fuel burn, and hence range.
Landroger
10th Oct 2010, 15:13
permalink
Post: 543
Another aspect of Concorde.

All this talk of a 'B' model is both interesting and a bit frustrating. It must be all the more so for our main contributors - M2Dude and ChristiaanJ - and I guess the crews themselves, that the 'B' never saw the light of day. The discussion about the engines/ intakes/ nozzles is taking place about another flight level above my head but still riveting stuff nonetheless.

May I ask a question about another aspect of Concorde life? In my own job as a CT/MRI scanner engineer, I was for many years a 'Registered Radiation Worker' and indeed I still wear the equivalent of a film badge. My annual dose though was and is tiny, virtually background. However, I remember seeing a chart from the Radiological Protection Board some years ago, that seemed to suggest Concorde Crews had the highest radiation dose in any industry routine operations.

Was this true and did Concorde crews wear a film badge as I did? I understand that 'ordinary' flight crews get quite a radiation dose, but nothing like the 60,000ft doses the lady permitted?

Roger.
M2dude
22nd Oct 2010, 09:26
permalink
Post: 597
Devil Ze Concorde Quiz Mk 2 (Or is it Mach 2?).... Ze Answers

OK guys, here are the answers. If you disagree about any of them then fire away, the old memory certainly 'aint perfect.
Quote:
1) How many Concorde airframes were built?
As many of you have guessed, there were 22: The 14 production airframes, the 2 production series development aircraft (201 & 202), the 2 pre-production airframes (101 & 102) and the 2 prototypes 001 & 002. PLUS, the major fatigue test specimen at the RAE Farnborough and the static test specimen at CEAT in Toulouse. The CEAT tests actually tested the wing to destruction; I seem to remember it was something like a 200% overload before the wing failed at the root. And great but rather sad pictures VOLUME , never seen these before.
Quote:
2) As far as the British constructed aircraft went, name the destinations that were served?. Regular flight numbers only, excludes charters etc.
OK, from MY memory , we have: London LHR (duhhh!!), Bahrein BAH, Singapore SIN, New York JFK, Washington IAD, Dallas DFW, Miami MIA, Toronto YYZ, Barbados BGI, and Riyadh RUH. As well as charters being ommited, so are some of the special 'surprise' shuttle appearances that Concorde would make, substituting a subsonic to and from destinations such as Manchester and Edinburgh.
Quote:
3) What was the departure time for the ORIGINAL morning LHR-JFK Concorde services? (Not called the BA001 then either).
11:15
Quote:
4) Further to question 3 above, what WERE the original flight numbers for the BA001 and BA003? (The morning and evening LHR-JFK services?).
The BA193 and BA 195.
Quote:
5) There were no less than FORTY SIX fuel pumps on Concorde. What was the breakdown for these? (Clue; don't forget the scavenge pump ).
OK, there were 12 engine feed pumps (3 per engine) 8 main transfer tank pumps (2 each for the transfer tanks 5, 6, 7 & 8), 4 'A' tank pumps (2 each for 5A & 7A), 8 trim-transfer tank pumps (2 electric pumps each for tanks 9, 10 & 11 PLUS 2 hydraulically driven pumps for tank 9), 4 electric engine start pumps (there was a single electric start pump per engine that delivered fuel to it's own dedicated start atomiser in the combustion chamber. The pump automatically ran when the engine HP valve was set to OPEN and would continue running for 30 seconds after the DEBOW switch was returned to the 'normal' position), 4 engine first stage pumps (a single mechanically driven pump per engine), 4 second stage pumps (a single pneumatically driven pump, sometimes termed 'the turbopump, per engine. This would cut out at around 20,000'), our scavenge tank pump (triggered automatically when there was 7 US gallons in the tank; pumping it back into tank 2. This pump was identical to an 'A' tank transfer pump), and FINALLY, a single de-air pump for tank 10. The pump would drive the fuel through a mesh, removing air bubbles from the fuel. Tank 11 used the L/H trim pump for de-air (similar principle)and would be switched on during take-off. This is why the tank 5 trim inlet valve being set to over-ride OPEN would result in the tank being highly pressurised in the case of the Gonesse disaster; the pump would obviously pressurise the L/H trim gallery and any tank on that side with an open inlet valve!!!
Quote:
6) What was the only development airframe to have a TOTALLY unique shape?
G-AXDN, aircraft 101. (A production wing, fuselage, droop nose and intakes, but with the short tail section and secondary nozzles of the prototypes.
Quote:
7) This one is particularly aimed at ChristiaanJ. What was the total number of gyros on the aircraft?
Ready ChristiaanJ? There were 18....Yes, the single SFENA standby horizon, 9 INS gyros (one per X,Y and Z platform in each of the 3 INUs), 8 autostab' rate gyros (one per axis for each of the 2 autostab' computers PLUS a monitor gyro for the pitch axis). The radar by the way used attitude signals from the INS.
Quote:
8) How many wheel brakes?
9. One per main wheel plus the single 'in flight braking' nose wheel brake.
Quote:
9) What Mach number was automatic engine variable intake control enabled?
Mach 0.7!!! Between this and Mach 1.26 the intake surfaces were positioned as a function of engine N1 if the engine was shut down for any reason. (Otherwise of course the intake surfaces were fully up). You needed a sub idle N1 of 57% and below for all this to happen, and it was to assist relight performance and reduce buffet. Between Mach 1.26 and 1.32 the ramps were driven down slightly to about 5%, full supersonic scheduling itself commencing at Mach 1.32.
Quote:
10) Above each bank of engine instruments were three lights, a blue, a green and an amber. What did they each signify?
Already brilliantly answered by Brit312 (as well as the FSLabs diagram). Yep, Geen GO, T/O monitor armed, fuel flow and P7 at or above datum, A/C on ground, reverse not selected and CON light not on. Amber CON (Reheat selected and not detected, N1 OK or reverse selected and primary nozzle (Aj) not at minimum. Blue REV; steady buckets at reverse, flashing buckets in transit.
Quote:
11) At what airfield were the first BA crew base training details held?
Fairford, followed by Brize Norton, and then a host of airfields from Prestwick and Shannon to Chateauroux.
Quote:
12) What LHR runways did Concorde use for landing and take-off? (Trick question, not as obvious as it might seem).
OK, probably no surprises now:
Landing - 27L & R, 9L & R (prior to LHR mag' deviation update were 28L & R & 10L & R) together with 23/05.
Take off - 27L (28L), 9R (10R) and 9L. (10L never happened as take offs on this runway only occurred in 2003).
Quote:
13) What operator had serious plans to operate Concorde from SNN to JFK in the early 1980's?
It was FedEx, they planned to operate two stripped out aircraft, leased from BA, between Shannon and JFK as high value parcel carriers. The idea was that parcels would be flown in from all over Europe by small FedEx feeder aircraft and the parcels transferred to Concorde which would then speed on to JFK in around 2 1/2 hours. It never happened because of a combination of economics appraisal by FedEx and BA deciding that it could would not release the aircraft anyway.
Quote:
14) What development aircraft did not exceed Mach 2 until fifteen months after her maiden flight?
A/C 101, G-AXDN first flew on 17th December 1971 with FIXED INTAKES!! (101 was going to be the launch vehicle for the new digital intake control system, but the 'boxes' were still being designed). This placed an operating limit of Mach 1.5 on the aircraft, limiting her ability with such a restricted flight envelope. She returned to Filton in late 1972 for installation of the system, as well as the new Olympus 593-602 engine. (The engine, very similar to the production Mk 610 version, used a quite revolutionary annular combustion chamber, and eliminated at a stroke the thick smoke exhaust that had up to then been Concorde's unwanted visual signiture). The aircraft flew more or less smokeless on 15 March 1973, achieving Mach 2 soon afterwards. As ChristiaanJ pointed out, the British prototype 002 had a similar gap, actually significantly higher, of 19 months. (The French aircraft 001 had an even longer gap of some 20 months).

I hope you guys had fun with this one, regards to all

Dude

Last edited by M2dude; 22nd Oct 2010 at 11:21 . Reason: oops, misssed out question 2
Feathers McGraw
25th Oct 2010, 22:52
permalink
Post: 609
Thanks Dude.

Not quite what I was expecting but very interesting all the same. I see that each finger appears to have an inlet at the base to allow gas flow to alleviate some of the turbulence behind it.

Now to find a picture of a Concorde reheat flame rosette to see how the flame matches up to the finger pattern.

Good game!

Better still, I found a picture of the reheat assembly with the fingers fitted:

Google Image Result for http://heritageconcorde.com/wp-content/uploads/2010/03/reheat-picture.jpg

Last edited by Feathers McGraw; 25th Oct 2010 at 23:16 . Reason: Add image link
Brit312
28th Oct 2010, 09:19
permalink
Post: 622
Quote:
Forgive me if this has been covered before but did the Concorde have bleed air wing or fin Anti-Icing ?
The engine intake guide vanes were heated [on selection] by a hot air bleed from the exit of the HP compressor. Other than that there was not hot air bleed for anti icing purposes

Now the leading edges of the intakes and the leading edges of various bits within the intake along with the underside of the wing in front of the the intakes were deiced by a combination of continuous and cyclic electrically heated mats.

All of this electrically heated deicing was infact extened engine deicing so as to ensure that when the ice came off it would be in small enough chunks for the engine to digest without damage. [Another system almost direct from the Bristol Britannia]

The fin nor the rest of the wing had any anti icing system
jodeliste
30th Oct 2010, 14:37
permalink
Post: 643
Engines

My physics has pretty much rusted away so can anyone help me with this, The frequent statement that the intakes accounted for approx 80% of the engine power when supersonic. I quite understand that the intake air has to be slowed to subsonic before it meets the first compressor disk but saying that the intake produces 80% of the power almost implies that you could turn off the fires and still have 80% power. Obviously that cant be right! and another thing I dont understand is how shock waves slow down the intake flow, so any help with that would be useful to me. Any aerodymicist/physicists out there?

Thanks and keep up the super remeniscences
rod
M2dude
5th Nov 2010, 11:56
permalink
Post: 663
I have to admit that some of the subsonic fuel burn figures for Concorde were truly eye watering, and without massive engine and airframe modifications there was precious little in service that could be done to improve things. Paradoxically improvements to the supersonic efficiency of the powerplant were easier to implement, and several modifications were implemented, tried or proposed to improve fuel burn:
Way back in the late 1970's we did a major modification to the intakes that increased capture area by 2.5% and gave us typically a 1.6% improvement in trans-Atlantic fuel burn, and although this was our biggest performance improvement modification, there were more:
The famous elevon and rudder trailing edge extension modifications (that due to poor design, produced in later life the water ingress induced honeycomb failures) together with the re-profiled fin leading edge modification, I never saw the performance gains quantified (anyone have any ideas?).
Can anyone here remember the riblet trial? In the mid 1990's Airbus supplied 'stick on' plastic riblets, applied to various areas on the under-side of the wing on G-BOAG. These riblets had very fine undulations moulded into the surface; the idea being that as the air flowed through and around the riblet patches, boundary layer turbulence, and hence induced drag would be reduced. Now, the performance gains (if any) were never quantified, mainly because the riblet patches either peeled off or the surface deteriorated with the continuous thermal cycle. (I was over in JFK when the aircraft first arrived after having the riblets fitted, and as the crew were trying to proudly show me these amazing aerodynamic devices, they were sadly embarassed, as several had dissapeared in the course of a single flight).
There was one modification, proposed by Rolls Royce in the late 1990's that did have quite a lot of potential; this was to increase the engine N1 by around 1.5%. This would have had the effect of increasing engine mass flow and therefore reducing the drag inducing spill of supersonic air over the lower lip of the intake. Depending on the temperature, the performance gains were in the order of a 1.5% improvement in fuel burn at ISA Plus upper atmosphere temperatures ('normal' LHR-JFK) to none at all at significant ISA Minus temperatures (LHR -BGI). The modifacation had been trialed on G-BBDG before her retirement in the early eighties, and was proven in terms of performance enhancement and engine stability. In order to keep TET at the pre-modification level, there was a small increase in N2 commanded also. (The higher N1 required an increase in primary nozzle area, reducing TET). The main reason for the modification not being implemented was one of cost; The Ultra Electronics Engine Control Units were analog units, and the modification was a simple replacement of two resistors per unit. However because ultimate mass flow limitation was also controll by the digital AICU (built by British Aerospace Guided Weapons Division) the cost of getting a software update for this exremely 'mature' unit was found to be prohibitive.
A certain 'brainy' SEO and myself were working on a modification to improve fuel burn on ISA minus sectors. The idea was to force the autopilot, in Max Cruise at low temperatures only , to fly the aircraft close to Mmo, rather than at Max Cruise speed of Mach 2 - 2.02; this would have given us gains of up to 1%, depending on the temperature. The basic electronics involved for the modification were relatively straightforward, but it was never pursued due to the complexity of dealing with temperature shears and the cost of certification.

Dude

Last edited by M2dude; 5th Nov 2010 at 15:49 .
Landroger
13th Nov 2010, 12:42
permalink
Post: 715
Tonkorde.

Sorry Dude, didn't realise that use of the 'T' word would upset you so! Perhaps you were frightened by one when you were a baby? I picked the T*****o randomly to illustrate the contrast between a military supersonic design and Concorde. She really wasn't a converted bomber and even by using up every ounce of a Tonka's lifting capacity, it would still run out of fuel before it reached the Fastnet Rocks, let alone anywhere useful.

I must have missed something about the SR71 while we were discussing 'Inlet Thrust' on the other thread. I thought there was at least some part of the performance envelope where the Blackbird 'supercruised?' If not, then Concorde's ability in this area is all the more astonishing.

While mentioning the SR71, a striking image of them - to me anyway - was of the streams of fuel, leaking from every seam of the fuselage immediately following in-flight refuelling. These apparently 'sealed up' when she expanded in supersonic flight. How did Concorde avoid this rather startling phenomenon?

Roger.