Posts about: "RAE Farnborough" [Posts: 4 Pages: 1]

M2dude
22nd Oct 2010, 09:26
permalink
Post: 597
Devil Ze Concorde Quiz Mk 2 (Or is it Mach 2?).... Ze Answers

OK guys, here are the answers. If you disagree about any of them then fire away, the old memory certainly 'aint perfect.
Quote:
1) How many Concorde airframes were built?
As many of you have guessed, there were 22: The 14 production airframes, the 2 production series development aircraft (201 & 202), the 2 pre-production airframes (101 & 102) and the 2 prototypes 001 & 002. PLUS, the major fatigue test specimen at the RAE Farnborough and the static test specimen at CEAT in Toulouse. The CEAT tests actually tested the wing to destruction; I seem to remember it was something like a 200% overload before the wing failed at the root. And great but rather sad pictures VOLUME , never seen these before.
Quote:
2) As far as the British constructed aircraft went, name the destinations that were served?. Regular flight numbers only, excludes charters etc.
OK, from MY memory , we have: London LHR (duhhh!!), Bahrein BAH, Singapore SIN, New York JFK, Washington IAD, Dallas DFW, Miami MIA, Toronto YYZ, Barbados BGI, and Riyadh RUH. As well as charters being ommited, so are some of the special 'surprise' shuttle appearances that Concorde would make, substituting a subsonic to and from destinations such as Manchester and Edinburgh.
Quote:
3) What was the departure time for the ORIGINAL morning LHR-JFK Concorde services? (Not called the BA001 then either).
11:15
Quote:
4) Further to question 3 above, what WERE the original flight numbers for the BA001 and BA003? (The morning and evening LHR-JFK services?).
The BA193 and BA 195.
Quote:
5) There were no less than FORTY SIX fuel pumps on Concorde. What was the breakdown for these? (Clue; don't forget the scavenge pump ).
OK, there were 12 engine feed pumps (3 per engine) 8 main transfer tank pumps (2 each for the transfer tanks 5, 6, 7 & 8), 4 'A' tank pumps (2 each for 5A & 7A), 8 trim-transfer tank pumps (2 electric pumps each for tanks 9, 10 & 11 PLUS 2 hydraulically driven pumps for tank 9), 4 electric engine start pumps (there was a single electric start pump per engine that delivered fuel to it's own dedicated start atomiser in the combustion chamber. The pump automatically ran when the engine HP valve was set to OPEN and would continue running for 30 seconds after the DEBOW switch was returned to the 'normal' position), 4 engine first stage pumps (a single mechanically driven pump per engine), 4 second stage pumps (a single pneumatically driven pump, sometimes termed 'the turbopump, per engine. This would cut out at around 20,000'), our scavenge tank pump (triggered automatically when there was 7 US gallons in the tank; pumping it back into tank 2. This pump was identical to an 'A' tank transfer pump), and FINALLY, a single de-air pump for tank 10. The pump would drive the fuel through a mesh, removing air bubbles from the fuel. Tank 11 used the L/H trim pump for de-air (similar principle)and would be switched on during take-off. This is why the tank 5 trim inlet valve being set to over-ride OPEN would result in the tank being highly pressurised in the case of the Gonesse disaster; the pump would obviously pressurise the L/H trim gallery and any tank on that side with an open inlet valve!!!
Quote:
6) What was the only development airframe to have a TOTALLY unique shape?
G-AXDN, aircraft 101. (A production wing, fuselage, droop nose and intakes, but with the short tail section and secondary nozzles of the prototypes.
Quote:
7) This one is particularly aimed at ChristiaanJ. What was the total number of gyros on the aircraft?
Ready ChristiaanJ? There were 18....Yes, the single SFENA standby horizon, 9 INS gyros (one per X,Y and Z platform in each of the 3 INUs), 8 autostab' rate gyros (one per axis for each of the 2 autostab' computers PLUS a monitor gyro for the pitch axis). The radar by the way used attitude signals from the INS.
Quote:
8) How many wheel brakes?
9. One per main wheel plus the single 'in flight braking' nose wheel brake.
Quote:
9) What Mach number was automatic engine variable intake control enabled?
Mach 0.7!!! Between this and Mach 1.26 the intake surfaces were positioned as a function of engine N1 if the engine was shut down for any reason. (Otherwise of course the intake surfaces were fully up). You needed a sub idle N1 of 57% and below for all this to happen, and it was to assist relight performance and reduce buffet. Between Mach 1.26 and 1.32 the ramps were driven down slightly to about 5%, full supersonic scheduling itself commencing at Mach 1.32.
Quote:
10) Above each bank of engine instruments were three lights, a blue, a green and an amber. What did they each signify?
Already brilliantly answered by Brit312 (as well as the FSLabs diagram). Yep, Geen GO, T/O monitor armed, fuel flow and P7 at or above datum, A/C on ground, reverse not selected and CON light not on. Amber CON (Reheat selected and not detected, N1 OK or reverse selected and primary nozzle (Aj) not at minimum. Blue REV; steady buckets at reverse, flashing buckets in transit.
Quote:
11) At what airfield were the first BA crew base training details held?
Fairford, followed by Brize Norton, and then a host of airfields from Prestwick and Shannon to Chateauroux.
Quote:
12) What LHR runways did Concorde use for landing and take-off? (Trick question, not as obvious as it might seem).
OK, probably no surprises now:
Landing - 27L & R, 9L & R (prior to LHR mag' deviation update were 28L & R & 10L & R) together with 23/05.
Take off - 27L (28L), 9R (10R) and 9L. (10L never happened as take offs on this runway only occurred in 2003).
Quote:
13) What operator had serious plans to operate Concorde from SNN to JFK in the early 1980's?
It was FedEx, they planned to operate two stripped out aircraft, leased from BA, between Shannon and JFK as high value parcel carriers. The idea was that parcels would be flown in from all over Europe by small FedEx feeder aircraft and the parcels transferred to Concorde which would then speed on to JFK in around 2 1/2 hours. It never happened because of a combination of economics appraisal by FedEx and BA deciding that it could would not release the aircraft anyway.
Quote:
14) What development aircraft did not exceed Mach 2 until fifteen months after her maiden flight?
A/C 101, G-AXDN first flew on 17th December 1971 with FIXED INTAKES!! (101 was going to be the launch vehicle for the new digital intake control system, but the 'boxes' were still being designed). This placed an operating limit of Mach 1.5 on the aircraft, limiting her ability with such a restricted flight envelope. She returned to Filton in late 1972 for installation of the system, as well as the new Olympus 593-602 engine. (The engine, very similar to the production Mk 610 version, used a quite revolutionary annular combustion chamber, and eliminated at a stroke the thick smoke exhaust that had up to then been Concorde's unwanted visual signiture). The aircraft flew more or less smokeless on 15 March 1973, achieving Mach 2 soon afterwards. As ChristiaanJ pointed out, the British prototype 002 had a similar gap, actually significantly higher, of 19 months. (The French aircraft 001 had an even longer gap of some 20 months).

I hope you guys had fun with this one, regards to all

Dude

Last edited by M2dude; 22nd Oct 2010 at 11:21 . Reason: oops, misssed out question 2
CliveL
21st Dec 2010, 17:38
permalink
Post: 928
quote:Interestingly, all the supersonic transport designs of the era (Concorde,Tu-144, B2707, L2000) can trace their ancestry back to NASA (NACA?) public-domain studies of the late fifties, that demonstrated the advantages of a slender delta for a supersonic transport aircraft.unquote

You guys are making me look out all the books/reports on Concorde that I had filed long ago!

I think there are a lot of guys who used to work at Farnborough that wouldn't agree with you here Christian. UK work on the possibility of designing a supersonic transport kicked off in November 1956 and that certainly included studies involving slender delta wings based on work that had already been started by the RAE at Farnborough. I was reading a lot of NACA material at that time and I don't remember anything demonstrating the advantages of a slender delta for supersonic transports. Do you have any references?

CliveL
CliveL
8th Apr 2011, 19:07
permalink
Post: 1286
Quote:
So how was the Concorde's airframe life calculated ?? Flying hours or perhaps pressurisation cycles ? Did a higher altitude effect anything since there would be a higher differential pressure??
I can't answer for the engines, but the airframe life was going to be limited by thermal fatigue cycles. There was an on-going programme of testing at RAE Farnborough where, from memory, 21000 cycles had been accumulated by the time it was shut down. The airworthiness authorities were demanding a safety factor of 3 because nobody had flown under that sort of limit before, so the theoretical life would have been 7000 flights.

Not so bad as it sounds in calendar years, as the annual utilisation of any one aircraft was very low, and there would also have been scope for life extension by applying certain modifications to the fuselage.
CliveL
1st Jun 2012, 19:57
permalink
Post: 1638
Well AFAIK , the basic delta concept was devised by Lippisch in Germany, and developed there during WWII.
It would be true to say that Chadwick was one of the first outside Germany to use it, but that was essentially with a rounded leading edge, which is a very different animal from the slender delta with a sharp leading edges to deliberately produce strong vortices which give non-linear lift at high AoA.
That concept was definitely the brainchild of Kuchemann and his team (mostly fellow Germans ) at RAE Farnborough.