Posts about: "V1" [Posts: 19 Pages: 1]

EXWOK
24th Aug 2010, 18:13
permalink
Post: 96
Attitudes

Always more nose up than a conventional a/c.

As you note, about 4 in the CRZ. About 10.5 degs on approach.

As part of the performance calcs we calculated a 'theta 2' value of pitch. This was bugged on the ADI with a little bug controlled from a thumbwheel on the yoke - at all speeds very accurate pitch control was required, hance this device and the ADI being calibrated in 1 degree increments.

Theta 2 was attitude reqd to obtain V2 in the first segment with one engine out, i.e. the target attitude if an engine failed after V1. Once the gear was up (second segment) one would pitch up a little to hold V2 until 600ft then start initial accel.

On all engines, one held it until 250kts then pitched up to maintain that speed. You'd typically reach it before passing over the M25 departing LHR to the West.

In all cases, as soon as SID altitude or noise abatement limits had been reached you went to the barber's pole asap (400kts initially) as this was where best performance lay.
Brit312
3rd Sep 2010, 20:49
permalink
Post: 205
M2dude,

The Braniff crews were great characters and yes many did wear cowboy boats, but the story I like is the one that goes as follows

After hours of briefing prior to going on the simulator [for the first time] the Braniff crew got on the sim and went through all their checks, started the engines and taxied out to the end of the runway for their first Concorde sim take-off. Everybody was strapped in with seats in the correct position and all checks complete.

The Captain called out "3,2,1, now" and all the throttles were moved sharply to full power and away we went with the visual showing the runway passing by at an ever increasing rate. Now the F/E had a couple of calls to make prior to V1 relating to how good the engines were performing the most important being at 100 kts, however before we got that far the Braniff F/E stood up in his harness and let out the cry " Gee Whiz look at the son of a bitch go".

Needless to say that take off was stopped and we went back to start again at the end of the runway
M2dude
4th Sep 2010, 10:49
permalink
Post: 212
BRIT312
Quote:
Now the F/E had a couple of calls to make prior to V1 relating to how good the engines were performing the most important being at 100 kts, however before we got that far the Braniff F/E stood up in his harness and let out the cry " Gee Whiz look at the son of a bitch go".
This story is totally hilarious, can't quite get this visual out of my head. ('100 KTS, POWER SET' sounds so boring in comparison). I never had the good fortune to meet any of the Braniff guys; sounds like there was certainly a character or two there. It really is a pity that their operation never really got a chance to expand into the proposed Pacific Rim service, who knows, it might really have done something.
It's generally known that the BA aircraft were temporarily re-registered to facilitate Braniff's operation out of IAD to DFW; G-BOAA, B, D & E were re-registered from G-BOAA and so on, to G-N94AA etc. Being an older registration, G-BOAC was re-registered as G-N81AC. At IAD, the 'G' part of the registration was covered over, leaving a now perfect 'American' tail number. Only five aircraft were involved in the operation (at the time BA operated just six aircraft, G-BOAF was still at the manufacturers at Filton, and G-BFKW (later to become G-BOAG) was on loan from British Aerospace. In order for the necessary FAA certification, required for operation by a US airline, a modification package were required by the FAA. Some of these modifications seemed a little 'picky' and irrelevant at the time (they still do). However some modifications were certainly not in this category, and quite honestly should have been 'picked up' by the CAA & DGAC during original certification of the aircraft. As an example, if the flying controls had been operating on GREEN or BLUE hydraulics only (due to an indicated spool valve jam) and that particular hydraulic system was subsequently lost, there was originally no automatic switching to select the standby YELLOW system into the flying controls; the controls would have been completely unpowered until a manual selection was made by the pilot. . One of the 'FAA Mods' was to facilitate just that, so if this (extremely unlikely I grant you) scenario had occurred, then YELLOW would automatically been selected into the controls, and at no time would the controls have been in an unpowered state.
The Braniff operation ended in May 1980, due to heavy losses on the subsonic only route, and it's a rather sad irony that aircraft G-BOAF had been modified and reregistered at Filton, from it's original registration of G-BFKX to G-N94AF. Unfortunately the aircraft was delivered to BA in June 1980, one month too late to participate, and prior to delivery it's registration was converted to it's 'normal' British registration; all other aircraft also reverted to original registrations also.
ChristiaanJ
Quote:
Reading your description of the autoland, you must be quoting from documentation, no?
Not really, being the sad b****d that I am, I still remember the Concorde flare law of: h+5h. = 0, so it was fairly easy to work out the programmed descent rates. (I did have to check the final 1.7'/second figure though). The rest I'm afraid is straight out of this sad old memory of mine.
Bellerophon
A brilliant description of the mechanics of final approach. It's so easy for us mere mortals to forget just what an involved and skilled process it was, to fly, and in particular land our totally amazing aircraft.

Dude

Last edited by M2dude; 4th Sep 2010 at 13:12 .
M2dude
9th Sep 2010, 13:07
permalink
Post: 296
Cool And more.....

Just to round up the braking issuue....
A fully laden Concorde had a V1 significantly higher than a fully laden 747. (A figure of about 50 MPH springs to mind; perhaps one of the 'flyers' will confirm this). Although the Jumbo is twice the take-off weight, the amount of kinetic energy present in Concorde was significantly higher, due to energy = Mass x the SQUARE of the velocity. Added to this, Concorde had only eight braked wheels compared to the Jumbo's SIXTEEN. This really is further testament to the Concorde braking system, that had to have an enormous amount of stopping power, particularly in the case of a near V1 RTO. And all of this achieved with just eight compact, extremely reliable and relatively light brake units.

Dude
EXWOK
9th Sep 2010, 16:06
permalink
Post: 299
M2Dude.....

In response to your query: V1 was typically about 160kts on a transatlantic sector, with a Vr of about 190 and a V2 approx 220.

Quote:
a fixed nose wheel speed Vo was used until the nose wheel touched down. (Can't quite remember what equivilant ground speed this related to though).
It wasn't in the flight manual but I seem to recall that the standing signal prior to nosewheel spinup was 100m/s. Presumably this also prevented brake application until the nose was down, being much higher than touchdown speed.

Anyone who travelled in the beast will know that we didn't use the brakes gently - they worked far better if you stood on them firmly and also seemed to wear less; certainly there seemed to be a lot more dust on the wheels if you used them gently.

Taxying out one had to be careful, it was easy to get a brake temp light on (was it 200degs? 220?) which meant waiting ages for it to cool. The watchword was minimum number of brake applications and make them firm, not feathery. And be careful on the lightweight departures as you needed them more.
TopBunk
9th Sep 2010, 17:52
permalink
Post: 301
M2D

A B747-400 at max take off weight (398tonnes) ex LHR would typically have a V1 ~ 155 kts, a Vr of about 170 and a V2 of 182 kts, so not dissimilar V1 speeds, but very different Vr and V2.

[I should add that this figures are for using reduced thrust and about 1.6 EPR on the RB211-524G engines where max thrust is about 1.72 EPR. Full thrust may result in an increased V1, I would guess].

This would suggest similar braking capabilities bearing in mind the differing TOWs involved. As to the relative brake unit weights I couldn't comment, nor therefore on the relative design pros and cons.

Numbers offered purely in response to your request.
M2dude
9th Sep 2010, 22:25
permalink
Post: 303
TopBunk
Thanks very much for the info; totally blows my argument out of the water as far as a near V1 reject. (The Vr figure does not really matter so much; we aint going to be much braking there ).
I was repeating what we were told at the training school at Filton in the early '80s. OK, no 744s alive then but certainly 'Classics' around aplenty. (I'm sure the Classic's V1 figures are not going to be a mile away from the '400's). Perhaps more relevent is going to be the brake energy required for landing (average Concorde landing speed was around 160 KTS, how does that compare to the 744?).
Thank you again for the info TopBunk, and sorry for coming out with such bilge previously

Dude
M2dude
10th Sep 2010, 09:20
permalink
Post: 309
Quote:
Not sure that the landing brake energy is more relevant, the RTO case must involve much more energy - a high speed, greater mass and less room to stop.
Agreed TopBunk, it's just as the Concorde and 744 V1s are so close it shows that the 744 has FAR more kinetic energy to dissipate in a near V1 RTO.
Many thanks for the landing speed info

Dude
gordonroxburgh
6th Oct 2010, 23:40
permalink
Post: 519
The AF simulator was regarded as a sub standard machine, never had the required interface or processing power compared the the UK machine that was built as a joint effort by Sinker-Link Miles (structure and motion) and Redifon simulation (interface and computers), with a view that the developed product would be offered to the option holding airlines.

A key failing of the AF machine was that it could not correctly simulate an engine failure on take off without going off the runway.

So what happened when AF had an apparent engine failure/fire after V1 in 2000? The crew made a right hash of the procedures....Nuff said really.
ChristiaanJ
16th Oct 2010, 22:27
permalink
Post: 580
OK, I see others have already posted answers.
I've carefully avoided looking at them, but I'll might as well plug in mine now.

Quote:
Originally Posted by M2dude
If you were never personally involved withe the aircraft you can leave out the really stinky questions if you want.
My personal problem is that I was involved in the very earliest days, before the aircraft went into service, and then in the last days and afterwards...
So the questions dealing with the in-service period are totally outside my field of experience... all I can do is guess, in case I saw the answers somewhere.

1) How many Concorde airframes were built?
Twenty-two.
Two static-test airframes.
- One at Toulouse, for purely static tests, and tests such as vibration and flutter.
- One at Farnborough, for the long-duration thermal fatigue tests.
(A few bits and pieces of the Farnborough test specimen have survived, and can still be seen at the Brooklands museum).
Two prototypes (001 and 002)
Two pre-production aircraft (01 and 02)
Two production aircraft used for certification, that never entered service (201 - F-WTSB and 202 - G-BBDG)
Fourteen production aircraft, seven that served with British Airways, seven that served with Air France.

2) As far as the British constructed aircraft went, name the destinations that were served?. Regular flight numbers only, excludes charters etc.
Not a clue as to the full list.
- Bahrain, obviously.
- JFK.
- IAD (not sure if that's rated as regular, or only incidental)
- Dallas (with Braniff)
- Barbados (of course, right until the end)
- Sngapore (with Singapore Airlines, and G-BOAD in Singapore Airlines colours on one side)
- Sydney (again no idea if that rated as a regular flight or only a few tries)

3) What was the departure time for the ORIGINAL morning LHR-JFK Concorde services? (Not called the BA001 then either).
Not a clue either. Vague memory of about 10:00 am which gave you a full working day in New York.

4) Further to question 3 above, what WERE the original flight numbers for the BA001 and BA003? (The morning and evening LHR-JFK services?)..
Never flew on them, never had to deal with them.
BA174 comes to mind from the depths of my memory, in that case BA003 would have been BA176?

5) There were no less than FORTY SIX fuel pumps on Concorde. What was the breakdown for these? (Clue; don't forget the scavenge pump )
M2dude, I did AFCS, not the fuel system. I believe you, but without pulling out some diagrams I honestly have NO idea.
I expect each tank had at least two pumps, which gets me up to 26.
Then there were a few emergency pumps for the trim tanks, and I suppose each engine had additional pumps associated with it.
Still nowhere near the 46 I need to find.....

6) What airframe had the only TOTALLY unique shape?
That would have been my old friend, 01 (G-AXDN), first pre-production aircraft, now at Duxford.
It was the first Concorde with the new transparent visor, but it still had the short tail that characterised the prototypes.
It was 02 (F-WTSA), the first French pre-production aircraft, that was close to the final shape of the production aircraft.

7) This one is particularly aimed at ChristiaanJ. What was the total number of gyros on the aircraft?
Good question.... never counted them all. But I'll try a guess.
First a nice one, the SFENA Emergency Standby Artificial Horizon (made by the firm I worked for).
Ran off the Emergency Battery Bus via a small independent inverter.
And if that failed too, it would still run reliably for several minutes on its own inertia.
Next, the rate gyros used by the autostabilisation system ; these measured the angular rate of the aircraft along the three main axes, pitch, roll and yaw.
There were six, three each for the two autostab systems.
Now the rest....
Each IMU (inertial measurement unit, part of the inertial naviagation system) had three gyros.
With three INS on board, that would make nine.
Much as I try, I can't remember other ones, so I'll look forward to the final answer.
I can imagine the weather radar using an additional gyro for stabilisation, but I never went there.

8) How many wheel brakes?
Unless this is a trick question, I would say eight, for each of the main gear wheels.
The nose gear did not have any brakes - unless there were some small ones to stop the wheels rotating after retraction of the gear, but not used during landing.

9) What Mach number was automatic engine variable intake control enabled?
No idea.
Mach 1.0 or thereabouts is my personal guess only.

10) Above each bank of engine instruments were three lights, a blue, a green and an amber. What did they each signify?
I know that they each monitored the status of one of the engines, because it was too complex for the pilots to fully monitor all the parameters of all four engines in the short time between start-of-roll and V1... they had too many other things to do.
But I don't remember what each light meant, would have to look it up in the manual.

11) At what airfied were the first BA crew base training details held?
No idea.
Was it Brize Norton, or Casablanca?

12) What LHR runways did Concorde use for landing and take-off? (Trick question, not as obvious as it might seem).
No idea.
Vague memory of it being systematically the North runway for noise issues.

13) What operator had serious plans to operate Concorde from SNN to JFK in the early 1980's?
No idea.

14) What development aircraft did not exceed Mach 2 until fifteen months after her maiden flight?
I would expect the obvious answer to be 002.
Working up from first flight to Mach 2 was a slow and laborious process, and in the end it was 001 that both flew first, and also went to Mach 2 first.
I don't think any of the other aircraft took that long.

A I said, I tried to answer all questions "off the top of my head", without looking at any other sources.

CJ
ChristiaanJ
24th Oct 2010, 23:33
permalink
Post: 605
Quote:
Originally Posted by twochai View Post
I understand that you could continue the takeoff if one reheat failed to light...
I'll leave it to M2dude to answer this fully and properly..
But... yes and no....
Whether you could actually continue the take-off, if one reheat didn't light, depended on several factors, such as t/o weight, runway length, ambient temperature, and suchlike. This was all calculated before take-off, and there was a little tab on the forward panel (I'll have to find a photo), which you would flip to either "3" or "4" as an instant reminder.
If the little tab said "4" and you got only three reheats coming on, you didn't have to think or go through a checklist... you rejected the takeoff.
M2dude probably can quote the speed.... but it was still well below V1, so such a RTO was not nearly as spectacular as a really nasty one around V1.

CJ
NW1
6th Nov 2010, 17:19
permalink
Post: 670
Concorde had a very advanced HUD fitted. It was a spring-loaded wire frame (a bue transparent plastic thing on 'OAG) which you could flip up in front of you to help judge the landing attitude. With final attitude about 11 degrees and secondary nozzles scraping the runway at (from memory) about 12.5 degrees attitude control was key.

Three-engined ferrys were approved. Went through it on the sim, and this is only from memory but you set full re-heated power on the symmetric pair, and the assymmetric engine at 75kts. "Power Set" was called slightly later than normal (130kts). Any re-heat failure before V1 = RTO.

There were loads of complex additional issues to go through at planning (the 3-engine ferry manual wasn't the thickest on the fleet - but it was thick enough!) and I don't think I'd have been too keen on doing one (I was never asked, and I don't know of any Concorde having done it - more "seasoned" fleet members may know better!): I think it was a slighly more critical proposition even than doing it on a blunty, and most guys I know have reservations about it on their fleets too...
Bellerophon
18th Dec 2010, 15:20
permalink
Post: 876
JFK 31L, Kennedy 9 Departure, Canarsie transition, Concorde climb


Speedbird 2, cleared take-off 31L.

You call 3-2-1 Now , start your stopwatch, pre-set to countdown from 58 seconds, and slam the throttles fully forward till they hit the stops. Four RR Olympus engines start to spool up to full power and four reheats kick in, together producing 156,000 lbs of thrust, but at a total fuel flow of 27,000 US gallons per hour. A touch of left rudder initially to keep straight, as the #4 engine limiter is limiting the engine to 88% until 60 kts when it will release it to full power. The F/O calls Airspeed building, 100 kts, V 1 , and then, at 195 kts, Rotate . You smoothly rotate the aircraft, lift-off occurs at around 10\xb0 and 215 kts. You hear a call of V 2 but you keep rotating to 13.5\xb0 and then hold that attitude, letting the aircraft accelerate.

The F/O calls Positive Climb and you call for the Gear Up . On passing 20 feet radio height, and having checked the aircraft attitude, airspeed and rate of climb are all satisfactory, the F/O calls Turn and you slowly and smoothly roll on 25\xb0 left bank to commence the turn out over Jamaica bay. Some knowledgeable passengers will have requested window seats on the left side of the aircraft at check-in, and are now being rewarded with a very close look at the waters of Jamaica Bay going by very fast! As you accelerate through 240 kts, the F/O calls 240 and you pitch up to 19\xb0 to maintain 250 kts and keep the left turn going to pass East of CRI.

54 seconds from the start of the take off roll you hear the F/O counting down 3-2-1 Noise whereupon the F/E cancel the re-heats and simultaneously throttles back to noise abatement power, around 96% as you pitch the nose down to 12\xb0 to maintain 250 kts. It is less than a minute from start of roll and already 435 US gallons of fuel have been used.


Speedbird 2, contact departure, so long.

Turning through heading 235\xb0M, the F/E quickly re-applies full dry power as you pitch up to 17\xb0 to maintain 250 kts, but simultaneously reduce the left bank to 7.5\xb0, in order to increase both the radius of turn (to stay on the optimum noise abatement track) and the rate of climb (less bank, higher RoC).

On climbing through 2,500 ft you increase the bank angle back to 25\xb0 left bank and as you approach the 253\xb0 radial JFK, you hear 3-2-1 Noise from the F/O for the second time. The F/E actions the second noise-abatement power cut back, you pitch down to 12\xb0 and, if not in cloud, sneak a quick peek out of your left hand window, looking for the car park by the Marine Parkway bridge, as you would ideally like to pass right over the car park, if possible, as we tip-toe quietly across the Rockaway Beaches, in order to minimise the noise impact on the residents.

Keep the left turn going and intercept the 176\xb0 radial outbound from CRI, and at 5 miles DME from CRI, call for the F/E to slowly re-apply full climb power as you pitch up to maintain 250 kts. We are still in US territorial airspace, below 10,000 ft, and subject to statutory speed control.


Speedbird 2, present position direct to SHIPP, climb FL230, no speed control.

The F/O selects direct SHIPP in the INS and tells you that she has selected that information into your Flight Director. Having checked that the gear lever is at neutral, you call for the Nose Up , and then the Visor Up . Flight deck noise levels drop dramatically as the Visor locks up. Now more than 12 miles away from the coast, we are clear of US speed control requirements so lower the attitude to 9\xb0, accelerate to V MO , currently 400 kts, and ask for the After Take Off Checks.


Speedbird 2, present position direct to LINND, climb in the block FL550-600, accelerate Mach 2.0

Call for the Climb Checklist at Mach 0.7, which will trigger the F/E to start pumping fuel rearwards to move the CG aft, then when he's done that, straight into the Transonic Checklist . Maintain 400 kts IAS, and around 24,500 ft, at M0.93, ask for the re-heats back on, in pairs, and raise the nose by 3\xb0 to maintain 400 kts as they kick in.

Precise, smooth flying is required through the high drag transonic region, as the mach meter creeps up towards Mach 1. A sudden flicker on the VSI and Altimeter confirms that the shock wave has just passed over the static ports, and the aircraft is now supersonic. A quick glance at the elapsed time indicator shows that you\x92ve been hand flying for just over 9 minutes since the start of the take off roll.

Another fun start to a day in the office, and to think we got paid for doing it!


Best Regards

Bellerophon
CliveL
21st Dec 2010, 17:13
permalink
Post: 927
Grrr

quote n boarding Concorde, I gave my business card to the purser, asking that she pass it forward. A few minutes later as the door was closing she came back to pass along an invitation from the skipper to join them in the cockpit.

For the balance of the climb I plied the guys with questions and received courteous and detailed answers to every one, I stayed through the supersonic acceleration until I thought I'd worn out my welcome at cruise climb, returning to my seat in the mid cabin area for lunch. They invited me back for the descent and approach, which was very well appreciated.unquote

When I retired I flew to Wsahington and back with BA and when the crew found I was on board I also got invited to view TO and approach from the jump seat. The main difference was that it was me that was plied with questions

My main memory is that it is one thing to argue with the airworthiness authorities about 'pilot delay times' when calculating balanced field lengths, but when you are sitting at the sharp end and getting towards V1 the end of the runway is approaching at a helluva lick which puts a degree of realsim into one's thoughts!

The other memory is the sheer beauty of London when approached sitting in the front of a Concorde on a clear winter's evening when the lights are on.

CliveL
Landroger
31st Dec 2010, 18:49
permalink
Post: 1051
ChristiaanJ

Quote:
Yes, two women. One in France, one in Britain.
Unless you also include Jacqueline Auriol, probably the world's first female test pilot, who flew Concorde 001 in the earliest days.
Oooerr CJ! I would think Hanna Reich would turn in her grave if she heard that! I believe she even test flew a V1 (Doodlebug)!!

Roger
ChristiaanJ
31st Dec 2010, 19:18
permalink
Post: 1052
Quote:
Originally Posted by Landroger View Post
Oooerr CJ! I would think Hanna Reitsch would turn in her grave if she heard that! I believe she even test flew a V1 (Doodlebug)!!
Roger, you're so right.
She was the first French woman test pilot, and maybe also the first woman with a formal FAA(?) test pilot license.
She did fly a few 'hairy' aircraft.
But indeed nothing like Hanna Reitsch flying the V1 "Reichenberg", or the Me-163, or a very early Focke-Wulf helicopter before the war!

CJ
Jane-DoH
3rd Apr 2011, 21:16
permalink
Post: 1252
Bellerophon

Quote:
You call 3-2-1 Now, start your stopwatch, pre-set to countdown from 58 seconds, and slam the throttles fully forward till they hit the stops. Four RR Olympus engines start to spool up to full power and four reheats kick in, together producing 156,000 lbs of thrust, but at a total fuel flow of 27,000 US gallons per hour. A touch of left rudder initially to keep straight, as the #4 engine limiter is limiting the engine to 88% until 60 kts when it will release it to full power. The F/O calls Airspeed building, 100 kts, V1 , and then, at 195 kts, Rotate . You smoothly rotate the aircraft, lift-off occurs at around 10\xb0 and 215 kts. You hear a call of V2 but you keep rotating to 13.5\xb0 and then hold that attitude, letting the aircraft accelerate.

The F/O calls Positive Climb and you call for the Gear Up . On passing 20 feet radio height, and having checked the aircraft attitude, airspeed and rate of climb are all satisfactory, the F/O calls Turn and you slowly and smoothly roll on 25\xb0 left bank to commence the turn out over Jamaica bay. Some knowledgeable passengers will have requested window seats on the left side of the aircraft at check-in, and are now being rewarded with a very close look at the waters of Jamaica Bay going by very fast! As you accelerate through 240 kts, the F/O calls 240 and you pitch up to 19\xb0 to maintain 250 kts and keep the left turn going to pass East of CRI.
I remember that -- the initial rotation was pretty normal other than being a bit faster, then from there it was brought up to a very steep climb (it feels worse than it is, but I was guessing it was around 22 or so degrees -- it has to do with eyeballing the angle of the horizon to the plane's current path -- 22.5 degrees is 1/4 the way up, 30 is 1/3, 45 is 1/2, 60 is 2/3's and so forth). Clearly I'm not a human ADI
Brit312
5th Apr 2011, 18:32
permalink
Post: 1259
Quote:
During the take off roll there was a power check called (by the FE, I think). I've heard this on recordings and videos variously as "power checked" and "Power set". Assuming they are one and the same check, which is correct
?

I think you are referring to the 100kt call, when the F/E was expected to give a call as to the state of the powerplant [both engine and reheat] achieving desired power for take off. He was assisted in this decision by the illumination of 4 green lights [ one per engine] which came on if the engine power was OK. Should one green light fail then he would confirm the correct engine operation by observing that engine's N2 and Area position

If all OK at 100kts the F/E would call ---- "Power Set"
If not all Ok then he would call ----------" Engine Failure" which would
result in a rejected Take off

In the early days there was no concession and every take off had to have 4 green lights illuminated so the call then was " 4 Greens" , but when the concession came along that term would not fit so the change in call

The concession were
1] one green light out [seeabove]
2] and basically if weight, and airport conditions allowed it a take off could be continued even with one reheat failed at 100kts

Up to 60 kts the F/E could reselectt a failed reheat so hoping it would be
OK by 100kts
At 100kts the conditions in the above concessions applied
Above 100kts the take off would continue even if a reheat failed however
if another fails when below V1 the take off would be rejected

So finally to answer your question the correct call [well in 1998] was

" Power Set "
Brit312
17th Sep 2011, 21:13
permalink
Post: 1461
Christiaan,
Just to add a bit more to your explanation is that

The reheat decision speed on every take off was 100kts

If the little tag showed 4 then you needed 4 reheats at 100kts to continue
the take-off

If the little tag showed 3 then at 100 kts you could continue the take-off even if one reheat had failed

If above 100kts you could always continue with the take off, even if a reheat had failed [ always required 3 reheats working]

So if it was a "3 reheat day" and a reheat failed prior to 100kts then a further reheat failure between 100kts and V1 would require the take off to be rejected.

Hope that makes sense??