Page Links: First 1 2 3 4 5 6 7 8 9 10 Next Last Index Page
tdracer
2025-06-12T23:19:00 permalink Post: 11899828 |
1) Fuel 2) Thrust lever position Everything else is 'goodness'. The FADEC has its own dedicated (gearbox mounted) electrical generator (actually alternator), so even a 100% aircraft power loss wouldn't affect the FADECs ability to control the engine. It was right at takeoff - 'suction feed' would be more than sufficient if the aircraft fuel pumps failed, FMC and other aircraft inputs have only a secondary effect on the thrust setting, it's primarily determined the thrust lever position. So there is no known way that a fault in the engine/aircraft interface could cause a large loss of thrust. 3 users liked this post. |
maggotdriver
2025-06-13T01:35:00 permalink Post: 11899911 |
Historical perspective. What if.
https://www.availabilitydigest.com/p...power_loss.pdf RIP to all, a tragic event. Last edited by maggotdriver; 13th Jun 2025 at 15:00 . |
tdracer
2025-06-13T02:18:00 permalink Post: 11899930 |
Determined to be an ergonomics problem with the switch layout in the flightdeck. Early 767s (JT9D and CF6-80A) had a supervisory "EEC" (Electronic Engine Control - Boeing still uses "EEC" to identify what most people call the FADEC on modern engines). The procedure if an EEC 'failed' was to switch both EECs off (to prevent excessive throttle stagger - unlike FADEC, the engine could operate just fine with a supervisory EEC failed). Problem was that the EEC ON/OFF switch was located on the aisle stand - right above the fuel cutoff switches. Turned out 'muscle memory' was when the pilot reached down there, it was usually to turn the fuel ON or OFF - which is what they did. Fortunately realizing what he'd done wrong, the pilot quickly restored the switches to RUN and both engines recovered. And yes, they continued on to their destination (RAT was still deployed since there is no way to retract it in-flight). Previous event was with JT9D engines (United IIRC). In that case, only one engine recovered (second engine went into an unrecoverable stall), they simply came back around and did a single engine landing. Realizing the ergonomic issue, the EECs were relocated to the pilot's overhead (retrofit by AD). To the best of my knowledge, there hasn't been a repeat of an inadvertent dual engine shutdown since the EEC switches were relocated. It's also very difficult to 'accidentally' move the switches as there is a locking detent - the switch must be pulled out slightly before it can be moved to CUTOFF. Last edited by T28B; 13th Jun 2025 at 02:22 . Reason: again, broke up the text to be reader friendly, great input! 11 users liked this post. |
Alty7x7
2025-06-13T03:42:00 permalink Post: 11899963 |
About the only way that could happen would be some catastrophic software 'hole' in the GEnx-1B FADEC software. By design, the only thing the engine control really needs to adequately the engine is:
1) Fuel 2) Thrust lever position Everything else is 'goodness'. The FADEC has its own dedicated (gearbox mounted) electrical generator (actually alternator), so even a 100% aircraft power loss wouldn't affect the FADECs ability to control the engine. It was right at takeoff - 'suction feed' would be more than sufficient if the aircraft fuel pumps failed, FMC and other aircraft inputs have only a secondary effect on the thrust setting, it's primarily determined the thrust lever position. So there is no known way that a fault in the engine/aircraft interface could cause a large loss of thrust. |
violator
2025-06-13T10:00:00 permalink Post: 11900272 |
About the only way that could happen would be some catastrophic software 'hole' in the GEnx-1B FADEC software. By design, the only thing the engine control really needs to adequately the engine is:
1) Fuel 2) Thrust lever position Everything else is 'goodness'. The FADEC has its own dedicated (gearbox mounted) electrical generator (actually alternator), so even a 100% aircraft power loss wouldn't affect the FADECs ability to control the engine. It was right at takeoff - 'suction feed' would be more than sufficient if the aircraft fuel pumps failed, FMC and other aircraft inputs have only a secondary effect on the thrust setting, it's primarily determined the thrust lever position. So there is no known way that a fault in the engine/aircraft interface could cause a large loss of thrust. 1 user liked this post. |
tdracer
2025-06-13T18:41:00 permalink Post: 11900793 |
OK, another hour spent going through all the posts since I was on last night...
I won't quote the relevant posts as they go back ~15 pages, but a few more comments: TAT errors affecting N1 power set: The FADEC logic (BTW, this is pretty much common on all Boeing FADEC) will use aircraft TAT if it agrees with the dedicated engine inlet temp probe - but if they differ it will use the engine probe . The GE inlet temp probe is relatively simple and unheated, so (unlike a heated probe) a blocked or contaminated probe will still read accurately - just with greater 'lag' to actual temperature changes. TCMA - first off, I have to admit that this does look rather like an improper TCMA activation, but that is very, very unlikely. For those who don't know, TCMA is a system to shutdown a runaway engine that's not responding to the thrust lever - basic logic is an engine at high power with the thrust lever at/near idle, and the engine not decelerating. However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. Fuel contamination/filter blockage: The fuel filters have a bypass - if the delta P across the filter becomes excessive, the filter bypasses and provides the contaminated fuel to the engine. Now this contaminated fuel could easy foul up the fuel metering unit causing a flameout, but to happen to two engines at virtually the same time would be tremendous unlikely. Auto Thrust thrust lever retard - the TO lockup in the logic makes this very unlikely (it won't unlock below (IIRC) 400 ft., and even that requires a separate pilot action such as a mode select change or thrust lever movement). And if it did somehow happen, all the pilot needs to do is push the levers back up. Engine parameters on the FDR: I don't know what exactly is on the 787 FDR with regards to engine parameters, but rest assured that there is plenty of engine data that gets recorded - most at one/second. Getting the FDR readout from a modern FDR is almost an embarrassment of riches. Assuming the data is intact, we'll soon have a very good idea of what the engines were doing 17 users liked this post. |
violator
2025-06-13T18:58:00 permalink Post: 11900812 |
OK, another hour spent going through all the posts since I was on last night...
I won't quote the relevant posts as they go back ~15 pages, but a few more comments: TAT errors affecting N1 power set: The FADEC logic (BTW, this is pretty much common on all Boeing FADEC) will use aircraft TAT if it agrees with the dedicated engine inlet temp probe - but if they differ it will use the engine probe . The GE inlet temp probe is relatively simple and unheated, so (unlike a heated probe) a blocked or contaminated probe will still read accurately - just with greater 'lag' to actual temperature changes. TCMA - first off, I have to admit that this does look rather like an improper TCMA activation, but that is very, very unlikely. For those who don't know, TCMA is a system to shutdown a runaway engine that's not responding to the thrust lever - basic logic is an engine at high power with the thrust lever at/near idle, and the engine not decelerating. However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. Fuel contamination/filter blockage: The fuel filters have a bypass - if the delta P across the filter becomes excessive, the filter bypasses and provides the contaminated fuel to the engine. Now this contaminated fuel could easy foul up the fuel metering unit causing a flameout, but to happen to two engines at virtually the same time would be tremendous unlikely. Auto Thrust thrust lever retard - the TO lockup in the logic makes this very unlikely (it won't unlock below (IIRC) 400 ft., and even that requires a separate pilot action such as a mode select change or thrust lever movement). And if it did somehow happen, all the pilot needs to do is push the levers back up. Engine parameters on the FDR: I don't know what exactly is on the 787 FDR with regards to engine parameters, but rest assured that there is plenty of engine data that gets recorded - most at one/second. Getting the FDR readout from a modern FDR is almost an embarrassment of riches. Assuming the data is intact, we'll soon have a very good idea of what the engines were doing |
lighttwin2
2025-06-13T22:05:00 permalink Post: 11900958 |
TCMA - first off, I have to admit that this does look rather like an improper TCMA activation, but that is very, very unlikely. For those who don't know, TCMA is a system to shutdown a runaway engine that's not responding to the thrust lever - basic logic is an engine at high power with the thrust lever at/near idle, and the engine not decelerating. However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. Two thoughts re TCMA: 1) Is it possible a false TCMA activation could have occurred just before, or concurrently with, the a/c leaving the ground, with the resulting loss of thrust and electrical power not being apparent for another (say) 10s); 2) As you say two simultaneous failures very unlikely... except that it did happen to that ANA flight, albeit during ground state. |
appruser
2025-06-13T23:21:00 permalink Post: 11900993 |
Combining all the bits and pieces of info from this thread so far, IMO we can theoretically sequence it thus using the video from the left:
00:18 Rotation. Normal takeoff config. 00:24 Gear up starts. per Raffael with FF. ......... FR24 ADSB last transmission (71ft, 172kt) just before runway threshold. Matches with video aircraft altitude at 1/2 wingspan. ......... ? Full power flameout leaves N2 ~ 60%; Airspeed < 200k so N2 will decay to 15% in 8-10s? ......... ? Takeoff EGT of 900C needs 25-35s to fall below 250C ? 00:27 Gear up stops. per Raffael with FF. Bogies tilted. ......... ? APU starts. 20-55s to 95%N? ......... Per 787 dual-engine fail/stall memory items, PM initiates Fuel Cutoff and Run. 00:28 Visible loss of thrust. Alt ~ 200ft using aircraft wingspan as measure. ......... Matches with eyewitness "within 5-10s ... it was stuck in the air". ......... Per 787 dual-engine fail/stall memory items, PM initiates RAT Switch for 1s. Whether auto or manual, the RAT initiates. ......... RAT "bang" heard by survivor ......... RAT coming online accounts for eyewitness "lights started flickering green and white". ......... Per 787 QRH below 1000ft, PF makes no change to Main Landing Gear and flaps, aircraft pointed straight for best glide. 00:31 Descending visibly, somewhere beyond the runway threshold. Alt ~ 200ft using aircraft wingspan as measure. ......... ? Because EGT > 250C FADEC blocks fuel (T-HOT hot restart inhibit?) so no relight though N2 > 15% ? ......... 787 glide ratio between 16:1 to 25:1 with MLG down, Flaps 5. About 15-20s and 3-5000ft of glide from 200ft? ......... Some flap accounts for the ground pictures. 00:34 ? N2 has presumably decayed to 15%, FADEC flips to X-START: airspeed outside envelope? No hope of relight now. ......... PM/PF transmits Mayday? ......... Video showing RAT deployed. 00:46 APU reaches some fraction of 95%N (APU sound accounting for survivor's perception of thrust?). 00:48 Impact. 4200ft from descent start, 3990ft from airport boundary road. 17s from visible descent start. if this is a valid sequence, the only remaining question is why the dual-engine failure at ~200ft agl? with condolences to the families and people affected. 4 users liked this post. |
tdracer
2025-06-14T00:30:00 permalink Post: 11901028 |
Cannot post screen grab of MMEL unfortunately.
TCMA is receiving quite a lot of attention on a number of forums. Looking through MMEL/MEL, it might appear that TCMA is only fitted to aircraft powered by RR-1000 turbofans. The accident aircraft (R.I.P.) was powered by General Electric turbofans. The MMEL/MEL makes no mention of TCMA although there may be a system of similar functions with different nomenclature. (see 787 MMEL ATA 73-21-06 \x84TCMA\x94) 4 users liked this post. |
KSINGH
2025-06-14T08:43:00 permalink Post: 11901266 |
I’m not a 787 driver so for fear of looking dumb in front of those that are this still confuses me. Even IF they’ve mis-selected the flap setting (I still don’t think it’s been cemented on here that there is in fact a FMS/flap setting disagreement warning but i believe there is), had the wrong de-rated take off settings, selected flaps instead of gear up the 787 with massive high bypass engines, FBW and full envelope protections surely cannot let itself be put in such a low energy/high alpha regime as we saw in the videos IF it has both fans functioning normally, surely? the pilots may have messed up royally and numerous times so those holes lined up but the plane is the final block in the chain and a 21st century all digital entirely clean sheet design was sold as being immune to such catastrophic outcomes from a few minor (consequential yes) and fairly common errors- aren’t all the protections and our procedures designed after decades of mistakes? im having a hard time squaring how a fully functioning modern bird like this could allow for this outcome and almost whatever the pilots did outside of unbelievable inputs and the pilots are are a bit of a red herring IMO ![]() Dale Winsley @Winsleydale No. The LE slats are deployed therefore the flaps are as well. This is an automatic linkage. The flaps are set at Take-Off. Hard to see from the angle but they are...if slats are out (easy to see) then flaps are set. Looks like Flaps 5. Also, the 787 has the highest Thrust-to-Weight ratio of any airliner on Earth. The change in Alpha and lift is a trifling matter for it, at these settings (1-5). It will fly out of it easily, even at that density altitude. The attitude change is - in the circumstances I describe, consistent with a massive power loss (both sides). I believe based on probability that simultaneous mechanical failure is not the cause. Fuel contamination or starvation is likewise unlikely based on the 787 fuel system. The common element is the FADEC/Autothrottle/TOGO. However, each engine FADEC is dual redundant two channels. So any such common failure must happen further upstream. From a design perspective, that would be unthinkable. But this is Boeing. Given what I can see with my own eyes, I believe the flap issue is a non-starter. Also, re the landing gear: Clearly the Positive Rate challenge would be met based on normal rotation and fly-off at V2. But since we know the flaps were set correctly, that rules out an "oopsie" moment. Just as likely there was at the challenge moment an indication that something was amiss, and the Gear Up call was not made. They see both N1s unwinding and it takes a second to get past the WFT factor. They cross-check and see the airspeed also unwinding. Then they unload the Alpha and pitch to gear down Vy. And they had another 6 seconds. Whatever it was, it was not a flap, mechanical or fuel issue. We will know soon enough. But this is Boeing. My gut says "software". All 787s worldwide need to be grounded, now. 6:10 AM \xb7 Jun 14, 2025 \xb7 53.8K Views Last edited by Senior Pilot; 14th Jun 2025 at 09:04 . Reason: Add X quote |
Ninefornow
2025-06-14T09:23:00 permalink Post: 11901300 |
Double power loss causality
A summary of the more certain things we know about the accident so far:
The takeoff run was from the full length and appeared normal, even after comparing with the same flight on previous days. This very much reduces the likelihood of it being a performance issue, e.g. wrong flaps, derate, ZFW/TOW, etc. Shortly after takeoff, the gear started retracting but stopped in an early intermediate position. At the same time the aircraft climb rate dropped off, then it started a shallow descent. This is consistent with a loss of electrical power causing a loss of hydraulic pressure and total engine thrust from both engines reducing below that generated by one engine at the takeoff setting. The position reporting also went offline at that moment, indicating that it was likely load shed due to an electrical malfunction . I personally think this is a good summary of what we can ascertain at this point from the evidence we have. I am not a 787 driver by any means but with a fair bit of aviation experience. I would be interested in any thoughts on this suggestion regarding loss of thrust: If we take it as a reasonable assumption as above that it is almost simultaneous loss of significant thrust, and for the good reasons already discussed, it is pretty unlikely that from what we can see/analyse, that the cause of this would be bird strike (expect to see some signs on video if it's significant enough to cause double engine failure) nor fuel contamination (reasons as above re: likelihood, other ac affected and simultaneous nature). TCMA I don't know enough about but it seems that the sensor redundancy/logic protection is so high it would not be the sole cause. On this basis, should we perhaps consider the causality of a total electrics failure of some kind first, leading to deployment of the RAT, gear retraction cease etc. Clearly the independent FADEC power generation systems would mean this doesn't on its own prevent thrust control of the engines but could we then be looking at cascading faults (possibly exacerbated by latent faults below the MEL/defect threshold) that contribute to dual power loss and sensor/system issues in throttle response not resulting in FADEC commands to the engines to increase thrust. So even at that point 'firewalling' the throttles could tragically not recover the situation? Very happy to be corrected by those with much more experience and understanding of big jets operations and systems! |
Alty7x7
2025-06-14T14:09:00 permalink Post: 11901517 |
Max EGzt and autorelight
Combining all the bits and pieces of info from this thread so far, IMO we can theoretically sequence it thus using the video from the left:
00:18 Rotation. Normal takeoff config. 00:24 Gear up starts. per Raffael with FF. ......... FR24 ADSB last transmission (71ft, 172kt) just before runway threshold. Matches with video aircraft altitude at 1/2 wingspan. ......... ? Full power flameout leaves N2 ~ 60%; Airspeed < 200k so N2 will decay to 15% in 8-10s? ......... ? Takeoff EGT of 900C needs 25-35s to fall below 250C ? 00:27 Gear up stops. per Raffael with FF. Bogies tilted. ......... ? APU starts. 20-55s to 95%N? ......... Per 787 dual-engine fail/stall memory items, PM initiates Fuel Cutoff and Run. 00:28 Visible loss of thrust. Alt ~ 200ft using aircraft wingspan as measure. ......... Matches with eyewitness "within 5-10s ... it was stuck in the air". ......... Per 787 dual-engine fail/stall memory items, PM initiates RAT Switch for 1s. Whether auto or manual, the RAT initiates. ......... RAT "bang" heard by survivor ......... RAT coming online accounts for eyewitness "lights started flickering green and white". ......... Per 787 QRH below 1000ft, PF makes no change to Main Landing Gear and flaps, aircraft pointed straight for best glide. 00:31 Descending visibly, somewhere beyond the runway threshold. Alt ~ 200ft using aircraft wingspan as measure. ......... ? Because EGT > 250C FADEC blocks fuel (T-HOT hot restart inhibit?) so no relight though N2 > 15% ? ......... 787 glide ratio between 16:1 to 25:1 with MLG down, Flaps 5. About 15-20s and 3-5000ft of glide from 200ft? ......... Some flap accounts for the ground pictures. 00:34 ? N2 has presumably decayed to 15%, FADEC flips to X-START: airspeed outside envelope? No hope of relight now. ......... PM/PF transmits Mayday? ......... Video showing RAT deployed. 00:46 APU reaches some fraction of 95%N (APU sound accounting for survivor's perception of thrust?). 00:48 Impact. 4200ft from descent start, 3990ft from airport boundary road. 17s from visible descent start. if this is a valid sequence, the only remaining question is why the dual-engine failure at ~200ft agl? with condolences to the families and people affected. In-flight, the Autorelight function should attempt to restart the engine as soon as a flameout is detected, and for an engine flaming out at high power it might catch it before it even goes sub-idle. Generally, Autorelight will continue attempting until some cutoff N2 at which time it will stop attempting, or if the pilot move the fuel switch to Cutoff. And while the EEC is still powered (via its own PMA) down to roughly 10% N2, the ignition exciters required for Autorelight do get their power from the airplane. |
Someone Somewhere
2025-06-14T17:48:00 permalink Post: 11901689 |
Much of the noise is from the core flow and combustion, not the fan and bypass air. Remove the fuel and the core exhaust is lower volume and cooler, even at high RPMs. |
tdracer
2025-06-14T20:48:00 permalink Post: 11901821 |
Another hour spent sifting through the stuff since last night (my sympathies to the mods
![]() "Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight. Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring). As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level. Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC). The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight. Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident: 1) TCMA activation shutdown the engines or 2) The fuel cutoff switches were activated. I literally can come up with no other plausible scenarios. In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive. 67 users liked this post. |
DaveReidUK
2025-06-14T21:27:00 permalink Post: 11901855 |
Another hour spent sifting through the stuff since last night (my sympathies to the mods
![]() "Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight. Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring). As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level. Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC). The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight. Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident: 1) TCMA activation shutdown the engines or 2) The fuel cutoff switches were activated. I literally can come up with no other plausible scenarios. In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive. 5 users liked this post. |
Mr Optimistic
2025-06-14T21:39:00 permalink Post: 11901865 |
TCMA
Which side of V1 does TCMA lurk? If a pilot closes the throttles to abort, does the system allow it? After all, "too low thrust" is outside the contour.... Ya know, when every conceivable possibility (or close) has been de wormed, it"s usually something impossible, or too fearful...(Or dishonest, fraudulent, criminal ....etc ,? However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. 2 users liked this post. |
BugBear
2025-06-14T21:59:00 permalink Post: 11901875 |
From tdracer
However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. |
Compton3fox
2025-06-14T22:13:00 permalink Post: 11901888 |
From tdracer
However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. 1 user liked this post. |
FullWings
2025-06-14T22:21:00 permalink Post: 11901900 |
I think it needs to be said again that pretty much anything can happen to the aircraft systems and the engines will carry on running - this is by design as they have independent FADEC and power supplies and at sea level fuel will get through without boost pumps. You could almost saw the wing off the fuselage and the engine would still produce thrust, TCMA notwithstanding.
We don\x92t know yet what actually triggered the RAT from the relatively short list but every item on it means there is a serious/critical failure(s). The flight path suggests that it was a double engine failure or shutdown (commanded or uncommanded) as anything else should have left the aeroplane in a poor state but able to climb away. 6 users liked this post. |