Posts about: "Fuel (All)" [Posts: 1005 Pages: 51]

Musician
June 20, 2025, 10:56:00 GMT
permalink
Post: 11906831
Originally Posted by soarbum
At that point, the total energy of the system would have comprised of the kinetic energy of the aircraft travelling at Vr, the rotational inertia of the engines and the potential energy of whatever fuel is beyond the cutoff valves.

Q5: Would this total energy have been sufficient to get the aircraft 100ft into the air?
Assume an object travels at 200 knots and its speed decays to 120 knots (100m/s to 60m/s). The kinetic energy lost thereby suffices to elevate that object by ~1000 ft. (320m) in a vacuum, i.e. disregarding drag. In other words, if 75% of the kinetic energy was lost through air resistance (drag), the aircraft could still climb more than 200 feet.
sSquares
June 20, 2025, 10:59:00 GMT
permalink
Post: 11906833
Originally Posted by user989
II. Fuel-related
1. Loss of electric fuel pumps
Suction feed would have provided sufficient fuel pressure.

2. Fuel contamination
No other aircraft affected, no measures taken at airport. Simultaneous flameout due to contaminated fuel very unlikely.

3. Vapour lock
Unlikely to occur in this scenario. Even if (momentarily) no sufficient fuel pressure from the center tank, the engines would have been fed by the wing tanks.
Suction feed would increase the possibility of vapour lock as the boiling point is temperature and pressure related.
Innaflap
June 20, 2025, 11:02:00 GMT
permalink
Post: 11906835
Originally Posted by soarbum
Engineer not a pilot. Experience in analog front ends, A2D and R2D conversion and embedded systems generally but no specific knowledge of the 787 or GEnx.

I like everyone else have no evidence that TMCA played a role but given that it is one of the few systems with the ability to cut fuel to the engines, here are some thoughts on how signal processing could have extended the window of when TMCA could bite. In particular, I'm looking at the time immediately after the nose lifts up when something may have physically shifted onboard.
I'll phrase it as a number of questions but realise that the few people who can answer may not be able to for now.

Thanks to tdracer's explanation on TMCA (albeit 747 not 787), we know that TMCA is a logic block within the FADEC whose only external inputs are a logic signal fron the aircraft that indicates whether it is on the ground or not and throttle position as determined by two independent resolvers per throttle side.

The logic would seem to be something of the form
If (G AND (N2>A OR N2>B)) Then CutOffFuel()
where G is true when the aircraft is on the ground,
A is an envelope defined by throttle resolver channel A and
B is an envelope defined by throttle resolver channel B

Q1: Am I correct in that assumption that when on the ground, overspeed with respect to EITHER resolver A OR resolver B can trigger TMCA?

We have been told that the logic (ie true or false) signal G is determined from the Weight-on-wheels sensors and the RadALT. It is reasonable to suppose that the designers still wanted TMCA to function after a hard landing where some landing gear components had failed.

Q2: When the nosewheel lifts off but the MLG is still on the ground and RadALT is close to ground, will G still be true?

Next, it is common when data fusing multiple inputs that there is a desire to clean up a signal before it is sampled digitally. This can remove effects such as switch bounce. The inclusion of low pass filters or hysteresis will generally add a propogation delay.

Q3: Is there a slow filter (Tc>=1s) in the ground/air logic which could have caused a slight delay before G became false after takeoff further extending the opportunity of TMCA to activate?

Q4: Does TMCA act almost instantly or does it wait for the fault condition to stay asserted for a period of time before acting?

At that point, the total energy of the system would have comprised of the kinetic energy of the aircraft travelling at Vr, the rotational inertia of the engines and the potential energy of whatever fuel is beyond the cutoff valves.

Q5: Would this total energy have been sufficient to get the aircraft 100ft into the air?

It would still need a mechanism for at least one throttle input to each FADEC to misbehave at the same time. Resolvers are fed with an excitation signal to the rotor and take back two orthogonal signals (Cos and Sin) from stator windings. Usually, the excitation comes directly from the resolver-to-digital (R2D) circuit but sometimes an external signal source is used. I would hope that in an aircraft system, each channel would be kept independent of everything else.

Q6: Does the excitation signal for the 4 throttle resolvers (2 per side) come from 4 independent (internal) sources?

My last thought for a single point of failure between both throttles would be a short between two wires or connection points carrying resolver signals, one from each side. Whether this could be caused by swarf wearing within a wiring loom, a foreign object moving about, crushed wires or even stretching of adjacent wires, I have absolutely no idea.

Q7: Do resolver signals from left or right, either channel A or B, run next to each other in a loom at any point?
Ahah! Logic raises the questions.

What happens when the 2 disparate processes that form TCMA disagree?

Raffael with FF
June 20, 2025, 11:04:00 GMT
permalink
Post: 11906838
Let me try to answer the questions about which I have some knowledge, as an aerospace engineer:
(I am not sufficiently informed to answer Q4,6 and 7, at the moment)

Originally Posted by soarbum
Q1: Am I correct in that assumption that when on the ground, overspeed with respect to EITHER resolver A OR resolver B can trigger TMCA?

We have been told that the logic (ie true or false) signal G is determined from the Weight-on-wheels sensors and the RadALT. It is reasonable to suppose that the designers still wanted TMCA to function after a hard landing where some landing gear components had failed.
Yes, overspeed on either resolver channel A or B alone will trip the TMCA fuel-cut logic


Originally Posted by soarbum
Q2: When the nosewheel lifts off but the MLG is still on the ground and RadALT is close to ground, will G still be true?
G is a single Boolean that FADEC derives from Weight-On-Wheels (MLG and NW) and radio-altimeter. Iit stays \x93ground\x94 until all WOW sensors go inactive (i.e. every wheel is off the runway) and the RadALT exceeds its airborne threshold.


Originally Posted by soarbum
Q3: Is there a slow filter (Tc>=1s) in the ground/air logic which could have caused a slight delay before G became false after takeoff further extending the opportunity of TMCA to activate?
That's very unlikely. Ground/air logic uses small hysteresis (tens to a few hundred ms), but not in the multi-second range



Originally Posted by soarbum
At that point, the total energy of the system would have comprised of the kinetic energy of the aircraft travelling at Vr, the rotational inertia of the engines and the potential energy of whatever fuel is beyond the cutoff valves.
Q5: Would this total energy have been sufficient to get the aircraft 100ft into the air?
Let's do the math very quickly:
Kinetic energy with a weight of 200,000kg, at Vr = 150kn = 77m/s: E_kin = 600MJ
Rotational energy of a GEnX engine is hard to calculate as I don't find reliable values for the rotary inertia. I found some for a GE90 and could roughly estimate 100MJ of rotational energy for each engine. However, I seriously doubt that this energy could be effectively used to gain thrust, as the thrust will drop very quicjkly after the fuel is cut off.
the required potential energy for a 100ft climb of a 200,000kg 787 is around 70MJ.

This ignores aerodynamic drag, still, 100 ft of climb remains energetically feasible.
However, it as been pointed out several times that the actual climb was higher than 100ft. Already for 200ft I would doubt the validity of my statement above.
Mechta
June 20, 2025, 11:09:00 GMT
permalink
Post: 11906844
There are numerous pictures ot the outside of B787 centre tanks on the net. Does anyone one have any internal pictures, showing the tank floor and fuel pump pick ups?
We know the engines lost power in the initial climb, shortly after rotation. If there was water sitting between the tank lower skin stringers, the rotation would have been the point that the water could tumble over the stringers that were previously preventing its movement. accumulate at the back of the tank and enter both pumps more or less simultaneously.

For background, I worked at Smiths Industries wet fuel testing the B777 gauging system on ground rigs, and at Airbus building and testing fuel tank inerting rigs. I've seen inside Airbus tanks, but not Boeing.
OPENDOOR
June 20, 2025, 11:17:00 GMT
permalink
Post: 11906850
Originally Posted by Fursty Ferret
If there was even the slightest suspicion that it was a TMCA issue there wouldn't be a GE engined 787 airborne until the problem was resolved.
Looking at the GE Aerospace website they appear to offer a remote monitoring service;

Remote Diagnostics

This engine health monitoring is incorporated GE Aerospace’s self-service customer web portals, where customers can find technical updates and analysis of key engine performance trends such as oil usage, gas temperatures, vibration, rotor speed, fuel flow and more. In addition, Customer Notification Reports (CNRs) issued to GE Aerospace customers identify potential engine issues with recommended maintenance actions. The comprehensive service includes dedicated consultations for analysis of key engine performance trends to optimize fleet operations as well customized insights and maintenance recommendations.
If this was on AI 171 presumably they would already know what happened.

https://www.geaerospace.com/commerci...ital-solutions
Squawk7700
June 20, 2025, 11:20:00 GMT
permalink
Post: 11906855
Originally Posted by Mechta
There are numerous pictures ot the outside of B787 centre tanks on the net. Does anyone one have any internal pictures, showing the tank floor and fuel pump pick ups?
We know the engines lost power in the initial climb, shortly after rotation. If there was water sitting between the tank lower skin stringers, the rotation would have been the point that the water could tumble over the stringers that were previously preventing its movement. accumulate at the back of the tank and enter both pumps more or less simultaneously.
I had been wondering the same until I read that there is a forward and a rear pickup within the tank. Each pump in the centre tank draws from it's own pickup and is piped to the spar valves and then onto the engines.

In a well designed boat, you'd have each engine feeding from a different tank for the utmost in redundancy, but seemingly not so in all aircraft.

MaybeItIs
June 20, 2025, 11:21:00 GMT
permalink
Post: 11906857
Originally Posted by Musician
It would definitely be nice to narrow that down; I can't do it, and your method is not convincing me.
I'd agree, without expert knowledge there would have to be big assumptions, but I expect that Aircraft Flight Engineers could do it. Probably already have.

The ADS-B datagrams sent by the aircraft show a much diminished climb rate with decaying speed, betraying insufficient thrust in that phase of the flight. That somewhat contradicts your assertions.
Sure, actual data is usually more accurate than eyeballed stuff. But not always. In fact, it's often the eye that determines that something measured or calculated is "Off". How accurate is ADS-B data? I've seen FR24 tracks go way off course then suddenly get corrected / interpolated, frequently. The erroneous data seems to be "removed" by their algorithm, but where are the errors arising? Why this inaccuracy, and therefore, how accurate are the datagrams referred to? I know there were no datagrams received during the backtrack that I accept actually occurred, but that's completely different from receiving erroneous ADS-B data.

I also do not have faith in anyone's ability to watch the cctv video and confidently determine through mere eyeballing that the climb rate did not decay by 15% within the first 100 feet or so.
Sure, the CCTV footage I've seen is very poor, a video, moved about and zoomed, of the CCTV screen. Not easy to judge, but still useful and could be analysed frame-by-frame to compensate for all the extraneous input. Anyway, it's obvious to me that the rate of climb dropped abruptly just before the flight attained its apex, as if thrust was suddenly cut off. Knowing the momentum to altitude conversion, it might be possible to estimate whether that's true or not. The evident RAT deployment supports engine shutdown, not just engines to Idle, doesn't it? In that case, it would be useful to know at what altitude the engine shutdown took place.

(The ADS-B data suggests the speed diminished 7% for ~50 ft of climb.)
Okay, didn't know that, I guess suggests means it's uncertain? Can you tell me from what height to what height it suggests this?

And why all the wrong figures for the height attained, quoted in previous thread? Can't all be the atmospheric conditions.

Other than your stone, even a glider can convert speed to altitude.
Haha! Even a stone (the right shape) can do that, and I'm not disputing that kinetic energy can be converted to altitude. Wings are useful for that... Just curious to get an idea of how much in this case.

To be honest, i believe that taking a lot of the evidence into consideration, it is possible to arrive at a limited number of scenarios for what is most likely to have happened.

One fact that alters things substantially is whether the survivor's impression is correct that possibly the engines started to spool up again just before impact. If that's the case then what does that do to the possibility or otherwise that the TMCA system caused a dual engine shutdown?

To me, since the world seems to be watching this forum, and we are getting no feedback from the authorities, what is posted here might be useful in helping the investigators look at things they might not have considered. Besides, as Icarus2001 has kindof suggested, it's probably a very good thing that there are clearly lots of keen eyes on this.

Last edited by MaybeItIs; 20th June 2025 at 11:29 . Reason: Missing [/QUOTE]
violator
June 20, 2025, 11:29:00 GMT
permalink
Post: 11906865
Originally Posted by Squawk7700
I had been wondering the same until I read that there is a forward and a rear pickup within the tank. Each pump in the centre tank draws from it's own pickup and is piped to the spar valves and then onto the engines.

In a well designed boat, you'd have each engine feeding from a different tank for the utmost in redundancy, but seemingly not so in all aircraft.
Interestingly enough on Airbus aircraft even when there\x92s fuel in the centre tank the centre tank fuel pumps are switched off automatically after the flaps are extended for takeoff and each engine is fed by its respective wing tank for takeoff. Surprised it\x92s not the case for Boeings
Squawk7700
June 20, 2025, 11:34:00 GMT
permalink
Post: 11906868
Originally Posted by violator
Interestingly enough on Airbus aircraft even when there\x92s fuel in the centre tank the centre tank fuel pumps are switched off automatically after the flaps are extended for takeoff and each engine is fed by its respective wing tank for takeoff. Surprised it\x92s not the case for Boeings
Don't get me wrong, I'm not suggesting for even a moment that Boeing don't do the same thing; I have no idea. I was merely pointing out how the centre tank feeds when it does.
Lead Balloon
June 20, 2025, 11:38:00 GMT
permalink
Post: 11906873
Originally Posted by Innaflap
Ahah! Logic raises the questions.

What happens when the 2 disparate processes that form TCMA disagree?
We have an authoritative answer to that question, but only if the TCMA implemented in the FADEC used on the 787 engines functions in the way described in conceptual documents: If one of the two TCMA 'channels' for an engine 'thinks' the shut off criteria are satisfied but the other channel doesn't, the channel which 'thinks' the shut off criteria are satisfied 'wins' and the fuel shut off valve for that engine is therefore given a shut off signal.
Mechta
June 20, 2025, 11:46:00 GMT
permalink
Post: 11906879
Originally Posted by violator
Interestingly enough on Airbus aircraft even when there\x92s fuel in the centre tank the centre tank fuel pumps are switched off automatically after the flaps are extended for takeoff and each engine is fed by its respective wing tank for takeoff. Surprised it\x92s not the case for Boeings
Aside from separating the two engines' respective sources of fuel, the Airbus approach also ensures that the pilots can't inadvertently select a centre tank for take off that is empty, or near empty, for a short sector.
Luc Lion
June 20, 2025, 11:51:00 GMT
permalink
Post: 11906889
I perfectly understand that there is much talking about TCMA here.
There is no direct evidence of what caused the crash but several indirect evidences point towards a near simultaneous shutdown of both engines without any visual clue of a catastrophic mechanical mishap. This leads to suspecting near simultaneous fuel starvation of both engines.
As the purpose of TCMA is shutting down the High Pressure Shut-Off Valve (HPSOV) and thus the fuel feed of an engine, it's normal to collect information on TCMA, on how it works, and on what data feeds it.

However, I hardly understand why there is no similar discussion about the spar valves and the systems that control their opening and closure.

I understand that the B787 spar valves are located in the MLG well, or at least are maintained from within that well.
If the engine shutdown happened when the gear retraction was commanded, that's a location commonality (although it's very unlikely that a mechanical problem happened in both wells at the same time).
Also I understand that there are several systems that command the opening or closing of the spar valves:
- opening: "Engine control panel switch" set to "START", or "Fuel control switch" set to "RUN"
- closing: "Engine fire handle" pulled out. (I wonder if "Fuel control switch" set to "CUTOFF" also closes the spar valve).
Are there direct wires running from these controls to the valves or is there a pair of control units receiving these signals and controlling the valve actuators?
If the latter is true, where are these control units? I guess that the likely location is the aft EE bay. Are they beside each other?

Last edited by Luc Lion; 20th June 2025 at 12:57 .
Innaflap
June 20, 2025, 12:08:00 GMT
permalink
Post: 11906904
Originally Posted by Lead Balloon
We have an authoritative answer to that question, but only if the TCMA implemented in the FADEC used on the 787 engines functions in the way described in conceptual documents: If one of the two TCMA 'channels' for an engine 'thinks' the shut off criteria are satisfied but the other channel doesn't, the channel which 'thinks' the shut off criteria are satisfied 'wins' and the fuel shut off valve for that engine is therefore given a shut off signal.
And each FADEC is unique to the engine in which it is hosted. So whilst these may be "autonomous" they still rely on data external to the engine itself such as WoW and Rad Alt where they hold more "sway" than they do in the flight deck.

Are these values recorded in the FDR?

Are values from the FADEC recorded?

Musician
June 20, 2025, 12:13:00 GMT
permalink
Post: 11906909
Flightradar24 and ADS-B

Thank you for your reply! There's a lot we agree on; unfortunately, I'll be cutting that from my response here.
Originally Posted by MaybeItIs
Sure, actual data is usually more accurate than eyeballed stuff. But not always. In fact, it's often the eye that determines that something measured or calculated is "Off". How accurate is ADS-B data? I've seen FR24 tracks go way off course then suddenly get corrected / interpolated, frequently. The erroneous data seems to be "removed" by their algorithm, but where are the errors arising? Why this inaccuracy, and therefore, how accurate are the datagrams referred to? I know there were no datagrams received during the backtrack that I accept actually occurred, but that's completely different from receiving erroneous ADS-B data.
Right. ADS-B is transmitted via radio, so reception can be patchy, or obstructed by someone else transmitting on the same frequency (e.g. other aircraft), so not every datagram that the aircraft sends gets received. When that happens, the live display of FR24 assumes the aircraft kept doing what it did, and when another datagram eventually comes in, it corrects the position. It also connects the locations of these datagrams, regardless of whether the aircraft actually went there. For example, in the AI171 there's a 4-minute gap between a datagram sent on the taxiway, and the next datagram sent when the aircraft was off the ground towards the departure end of the taxiway. FR24 then connected these points via the shortest route; but we know that the aircraft actually used the intervening 4 minutes to taxi to the approach end of the runway, where it then started its take-off run. So that was false. (Another source of errors is when different FR24 receivers don't have synchronised clocks, so a mixture of data from these can have weird artifacts as a result.)
However, the datagrams that FR24 actually received were correct. They contain the GPS position of AI171 and its unadjusted barometric altitude, as determined by its onboard instruments. This data is as reliable as the instruments themselves are. (An example here is that the NTSB wasn't sure that the altimeter on the Blackhawk that crashed at Washington-Reagan was accurate; if that is the case, the ADS-B data would also be affected.)

On their blog post at https://www.flightradar24.com/blog/f...rom-ahmedabad/ , FR24 have published the data that they actually received.

Sure, the CCTV footage I've seen is very poor, a video, moved about and zoomed, of the CCTV screen. Not easy to judge, but still useful and could be analysed frame-by-frame to compensate for all the extraneous input. Anyway, it's obvious to me that the rate of climb dropped abruptly just before the flight attained its apex, as if thrust was suddenly cut off.
Have you ever seen a parabolic trajectory from "the short end"?
Knowing the momentum to altitude conversion, it might be possible to estimate whether that's true or not. The evident RAT deployment supports engine shutdown, not just engines to Idle, doesn't it? In that case, it would be useful to know at what altitude the engine shutdown took place.
Yes.

(The ADS-B data suggests the speed diminished 7% for ~50 ft of climb.)
Okay, didn't know that, I guess suggests means it's uncertain? Can you tell me from what height to what height it suggests this?
It's uncertain because the 787 rounds all altitudes it sends to the nearest multiple of 25. The altitudes sent were from 575 ft to 625 ft., but that's MSL and not adjusted for the weather: low air pressure makes that number higher than the actual altitude. FR24 adjusted this to 21ft climbing to 71 ft, but it could've been 30 to 60 or maybe 10 to 80, as it's rounded. I think it's fairly close to 50 feet of climb, though.

And why all the wrong figures for the height attained, quoted in previous thread? Can't all be the atmospheric conditions.
1) people taking the MSL altitude literally (625 ft)
2) people adjusting for airport elevation (189 ft), but not for pressure: 437 ft
3) people adjusting for pressure, some adjusting for temperature, get 71 to ~100 feet for the last recorded altitude.
But while ADS-B reception was lost then (or the transmitter lost power), the aircraft continued climbing; examine the cctv video, knowing the wingspan is ~200 feet, we see that the aircraft reached 200 feet but not much more.

One fact that alters things substantially is whether the survivor's impression is correct that possibly the engines started to spool up again just before impact.
The survivor likened the sound to a car engine revving up. If you've listened to a good version of the phone video, you'll have noticed the "vroom" sound at the start that some likened to a motorcycle. That sound is the RAT in action, and you can imagine what that would sound like when it rapidly spins up: like a driver stepping on the throttle with their car engine in neutral.
If that's the case then what does that do to the possibility or otherwise that the TMCA system caused a dual engine shutdown?
The RAT deploying is a consequence of a dual engine shutdown. It says nothing about whether the TMCA was involved.

[Now I just hope your post is still there as I post this. ]

Last edited by Musician; 20th June 2025 at 12:26 .
oyaji-fr
June 20, 2025, 13:49:00 GMT
permalink
Post: 11906988
Hi

Originally Posted by BraceBrace
During a flameout it takes a while before the fan has slowed down sufficiently. As long as it rotates, thrust is generated.
This got me thinking, looking at the engine mounted shutoff valve (HPSOV) in ATA 76, I see that its operated by three sources
  • FADEC, as discussed in a number of posts above
  • RUN / CUTOFF switch
  • engine fire control panel
I have a hard time believing the pilots would have touched the engine fire controls under such conditions (obviously they are highly trained for engine failure before Vr), but am I correct when I say that the behavior of the plane systems closely resembles what would happen if the engine fire signal was triggered?
  • engine fuel spar and high-pressure valves would be cutoff (obviously)
  • hydraulics pump would be depressurized and shutoff from the circuit
  • electrical generators would be disconnected
We wouldn't be talking about this flight had this occured on a single engine, so I believe this should had happened on both at about the same time.

Looking at ATA26 the engine fire control panel is energized by the hot battery bus (HOT BB). Is it credible that a failure of the hot battery bus (for example due to damage or liquid ingress in the P300 panel ) could lead to this situation?

Last edited by oyaji-fr; 20th June 2025 at 14:07 .
Capn Bloggs
June 20, 2025, 15:49:00 GMT
permalink
Post: 11907075
Disclaimer: the numbers I mention are from publicly available sources, namely Wiki (for the ZFW weight calculation) and a Boeing FCOM dated 2010, and my own estimations.

Strange, as I would have estimated this quite differently based on layman's intuition. If one assumes average values, then the approximate flight profile of AI171 according to layman's guidance certainly fits a situation in which the engines failed at or even very shortly before rotation.
IMO, if those engines failed just after rotation, there is no way that jet would have got anywhere near 200ft, especially if the fuel was "cut off", as opposed to back to Idle.

​​​​​​​ Is VR about 20 to 30 knots above the landing speed?
At 420k lbs (310k lb ZFW+110k lb Fuel), the (takeoff) V2 Flap 5 is 157kts. The (landing) Vref for Flap 5 I estimate to be at least 160kts (the FCOM I have has no figures for Flap 5 landings; F20 Vref is 154; the manoeuvre speed for Flap 5 is 189). Typically, you'd probably be at V2+15 when you get established in the climb after rotation.

​​​​​​​ Would these 20 to 30 knots of additional energy be sufficient to lift the aircraft to a good 200 ft during and after rotation?
No. With a pitch attitude of around 15\xb0, that's quite a bit of weight being supported not only by the wings but by the engine thrust vector. Cut that and you stop going up very quickly. Note Sailvi's comment above.

​​​​​​​ If the angle of attack is then successively reduced, wouldn't the airplane still have enough lift to glide for a few seconds before losing all or nearly all lift?
ANY reduction in pitch attitude would cause the climb to cease immediately. These aircraft are going so slowly, relatively, and the drag is so high that any small change in pitch attitude will cause an increase in descent rate with very little increase in speed (or no lessening of deceleration).

​​​​​​​ Wouldn't it be the case that if the thrust had only ceased five seconds after rotation, the aircraft would then have reached a good 250 ft with the engines still running and then another good 200 ft in normal conditions before the speed was used up to about 150 kn?
Not IMO. Basically, the only reason this jet is flying is because of the whopping long thrust vector out the back. It's already almost back at minimum speed anyway for flap 5 so there is very speed to trade. In this case, I wouldn't be trading anything, because the speed reduction rate would be too fast.

​​​​​​​ AI171 probably didn't reach an altitude of 400 to 500 ft above ground (in relation to the airport), did it?
My estimate is around 200ft (one wingspan) and I hypothesise the engines were producing plenty of thrust until about 7 seconds, before it stops climbing at around 12 seconds after liftoff.

@Brace , I think you're exaggerating the residual thrust effect at lower RPMs. Of course 70% would get you round the pattern but you're at a much lower drag config and you're going much faster, again less drag. And are improved-climb takeoffs in the 787-8 even a thing? I can't see a two-stage rotation.

I've made up a YT combo video:
EXDAC
June 20, 2025, 17:12:00 GMT
permalink
Post: 11907144
tdracer posted - " Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring)."

Search this thread for "HPSOV" if you need confirmation of the quote.

Note there are two shut off fuel valves per engine - the HPSOV and the Spar valve. Both stay where they are if power is lost.

EDML
June 20, 2025, 17:18:00 GMT
permalink
Post: 11907146
Originally Posted by EXDAC
tdracer posted - " Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring)."

Search this thread for "HPSOV" if you need confirmation of the quote.

Note there are two shut off fuel valves per engine - the HPSOV and the Spar valve. Both stay where they are if power is lost.
And that\x92s the only way it makes any sense.
Crossky
June 20, 2025, 21:16:00 GMT
permalink
Post: 11907327
Hello, this is my first post on pprune; as a 787 pilot I’m also puzzled by this accident. All seem to agree that for some reason there was a complete electrical failure and RAT deployment. With a complete electrical failure all six main fuel pumps fail. Each engine also has two mechanically driven fuel pumps. On takeoff, if there is fuel in the center tank, it will be used first, pumped by the two center tank pumps.
My airline’s manuals don’t go into much detail, but I read on another site that if both the center tank pumps fail, the engine driven pumps aren’t able to suction feed well enough from the center tanks to sustain engine operation. If there was fuel in the center tanks, a complete electrical failure would soon lead to center tank fuel pumps failure (all fuel pumps failure as stated previously) and fuel starvation of both engines. A rescue from this situation would be an immediate selection of both center tank fuel pumps OFF (not if my airline’s non-normal checklists) and waiting for successful suction feed from the L and R main tanks to occur, this would take a number of seconds.