Posts about: "Fuel Contamination" [Posts: 64 Pages: 4]

TURIN
2025-06-30T22:49:00
permalink
Post: 11913931
Grounded Spanner
There's an awful lot of ifs and buts in that opus.
A water spillage from a galley or lavatory would have to be huge to cause the type of total electrical failure you describe. The Power Electrics panels are yards apart, for both main systems to fail simultaneously due to water ingress would take gallons and gallons of water. Sorry but I don't buy it!

Do they still use Bowsers in India? I thought most airports used underground pipes feeding pots on the stands.

Re: settled fuel. As soon as the boost pumps are running, fuel is being recirculated. When we do water drain checks we have to leave the aircraft for a good hour after any refuelling, boost pump operation or aircraft movement before taking the samples. Otherwise any water will remain suspended in the fuel.
Generally speaking flight deck preparation that I have witnessed will have the boost pumps on many many minutes before take off. This will agitate the fuel and any contamination sufficiently to render your theory moot .
I'm also not quite sure how the aircraft could have got so much contaminated fuel on the previous sector and it not be scavenged out during that flight.

1 user liked this post.

FullWings
2025-07-01T06:45:00
permalink
Post: 11914044
Originally Posted by 13 others
Perhaps a result of being too dense, in these threads I have not understood whatsoever the discussions on L/D, best glide, AOA, stall speed, angles, whatever, as being relevant to this flight. I assume that the pilot flying was flying, i.e. stick and rudder. I give him/her the benefit of the doubt on account of being a pilot. Professional or not.
Quite. If all we had to go on was the position of the crash site it might have made sense but we have video and audio of pretty much the whole thing, plus a bit of ADSB. You could almost say that we now know how far a 787 will go when it loses all useful thrust just after rotation.

The real question is why this happened when engines and their associated systems are, by design and regulation, as independent as possible. The top runners at the moment are (in no particular order): pilot action, simultaneous hardware/software malfunction and massive fuel contamination. They are all very unlikely (and cogent technical arguments can be made against each of them) but so is the event that followed.
adfad
2025-07-01T12:55:00
permalink
Post: 11914255
Originally Posted by Someone Somewhere
I believe that particular bug is fixed, though it's always possible there's other issues causing a total AC loss.

Not really relevant to what you quoted though, as the scenario in question requires:
  • Engines running on centre tank fuel during takeoff while the aircraft is operating normally
    • We don't know for certain if this is the case. It seems to be but it's not something that happens on other families.
  • Then, total AC failure stopping fuel boost pumps.
  • Engines suction feed from contaminated/full-of-water wing tanks.

The aircraft has two engines and should be able to climb out on one, plus it dropped like a rock . 'Significantly degraded' thrust isn't really compatible with what we saw. You'd also expect the engines to recover pretty quickly as it leveled off.

The limitations at high altitude are primarily air/volatiles degassing out of the fuel. That's not going to be much of an issue at sea level, even if the engines are a bit higher up during rotation.
APU is a nice-to-have; it's on the MEL. If you lose all four generators, it's because of some major carnage in the electrical software/hardware and chances of putting the APU on line even if it's operating are very slim.
As an electronics and software engineer who has read the AD and related materials on the 248 day bug my understanding is that:
  1. The specific 248-day integer overflow was patched, and before the fix was rolled out, the AD required this system to by power cycled every 120 days to prevent overflow
  2. The PCU software still has the functional requirement to be able to command all AC GCUs to enter failsafe mode, this means that while the initial bug was fixed, the ability for this particular software system to command the same result is still a functional part of the architecture - presumably for safety management of the AC system
  3. This was not the first or last "software overflow error" issue in Boeing or even in the 787
Although I'm not qualified in aviation engineering I do believe from an engineering safety standpoint that this architecture creates a rare but entirely feasible scenario in which the aircraft would be without AC power for at least 30 seconds until the APU could restore it.

I do agree that the engine driven pumps should be able to provide fuel alone, the whole point of these pumps is to keep the plane flying within some limitations, high altitude is one of those limitations, I propose that there may be others based on the following:
  • Some more knowledgable people here have proposed or countered vapour lock, fuel contamination and automatic fuel cut-off theories to various degrees - even if these are not enough on their own, loss of electrical during rotation at high temperature could combine with these in a way we have not yet considered
  • Thrust is nonlinear, and while I'm not qualified to say how much loss of fuel flow or loss of thrust would be critical in this scenario we do know that it was a hot takeoff with significant weight and gear remaining down - I know others here have run sims but I don't think anyone has focused on specific thrust / fuel flow params
  • While electric fuel pumps might not be physically necessary for takeoff, my final point is: why are they required for takeoff? Is it not to mitigate cavitation, fuel sloshing at rotation, or any other kind of problem that might be relevant here?
Someone Somewhere
2025-07-01T13:08:00
permalink
Post: 11914265
Originally Posted by adfad
As an electronics and software engineer who has read the AD and related materials on the 248 day bug my understanding is that:
  1. The specific 248-day integer overflow was patched, and before the fix was rolled out, the AD required this system to by power cycled every 120 days to prevent overflow
  2. The PCU software still has the functional requirement to be able to command all AC GCUs to enter failsafe mode, this means that while the initial bug was fixed, the ability for this particular software system to command the same result is still a functional part of the architecture - presumably for safety management of the AC system
  3. This was not the first or last "software overflow error" issue in Boeing or even in the 787
Although I'm not qualified in aviation engineering I do believe from an engineering safety standpoint that this architecture creates a rare but entirely feasible scenario in which the aircraft would be without AC power for at least 30 seconds until the APU could restore it.
Similar failures have happened on 737s/A320s/A330s and others. I'm not denying it's possible. There's a reason it's a certification requirement for the engines not to be dependent on aircraft power. The APU is MELable and battery starts are not extremely reliable.

I do agree that the engine driven pumps should be able to provide fuel alone, the whole point of these pumps is to keep the plane flying within some limitations, high altitude is one of those limitations, I propose that there may be others based on the following:
  • Some more knowledgable people here have proposed or countered vapour lock, fuel contamination and automatic fuel cut-off theories to various degrees - even if these are not enough on their own, loss of electrical during rotation at high temperature could combine with these in a way we have not yet considered
  • Thrust is nonlinear, and while I'm not qualified to say how much loss of fuel flow or loss of thrust would be critical in this scenario we do know that it was a hot takeoff with significant weight and gear remaining down - I know others here have run sims but I don't think anyone has focused on specific thrust / fuel flow params
  • While electric fuel pumps might not be physically necessary for takeoff, my final point is: why are they required for takeoff? Is it not to mitigate cavitation, fuel sloshing at rotation, or any other kind of problem that might be relevant here?
Thrust is non-linear and complex. Reaction engines (i.e. fans, props) are generally most efficient at minimum power - lowest excess velocity. Turbine engines are generally most efficient at high power. These cancel out somewhere in the middle. With two engines at low power, you also don't have the drag from the dead engine or the drag from the rudder countering yaw.

Cavitating destroys pumps rapidly - someone upthread said replacing the fuel pump immediately is SOP if it has suction fed. Expect end of life in tens of hours rather than tens of thousands.

Some aircraft have switched to using jet/venturi pumps powered by returned fuel, like the A220. The electric boost pumps there are mainly for redundancy and are shut down in cruise; only one in each wing tank. Some A320s replace the centre override pumps with venturi transfer pumps.