Page Links: First Previous 1 2 3 4 5 6 7 8 Next Last Index Page
BugBear
2025-06-15T00:08:00 permalink Post: 11901978 |
Lull
Consider losing one engine on the Dream. If it is a generator that's failed let's say #2 . Do the electric fuel pumps lose power? Only in #2? Does the mechanical pump start feeding right away? If so, is there a lull? Are both engines fuel pumps supplied off one Gen?
See I think there was no simultaneous loss of both 1, 2. The odds give me a migraine. I still wonder if TCMA knows the difference between parked, rolling, rotated brakes and stowed. Only parenthetically, it didn't do this |
MaybeItIs
2025-06-15T00:54:00 permalink Post: 11902008 |
I think it needs to be said again that pretty much anything can happen to the aircraft systems and the engines will carry on running - this is by design as they have independent FADEC and power supplies and at sea level fuel will get through without boost pumps. You could almost saw the wing off the fuselage and the engine would still produce thrust, TCMA notwithstanding.
Anyway, the thing I'm looking at is how the fuel cutoff switch function could have been activated in some other way. To me, it seems obvious that there are wires that run between the engine fuel shutoff valves and the cockpit / flight control panel (no doubt with relays etc in between). I don't know where those shutoff valves are located, but logic says they should be located in the fuselage, not out at the engines. I also don't know how those valves operate - are they solenoid valves or electro-mechanically driven? Nor do I know where the power to activate those valves comes from, but using my logic, if those valves close when powered off, such as solenoid valves typically do, then the power cannot exclusively come from the engine-dedicated generators. If it did, you'd never be able to start the engines so they could supply their own power to hold those valves open. So, there must be some power (appropriately) fed from the main aircraft control bus to activate those valves - if the rest of what I'm assuming is correct. Anyway, like I say, I don't know enough about the details at this point, but there are many more ways to activate or deactivate a circuit than by flicking a switch. Killing the relevant power supply, for example. A screwdriver across some contacts (for example), another. Shorting a wire to Chassis, maybe. Just trying to contribute what I can. You raise another interesting point: "TCMA notwithstanding". Could you elaborate, please? What will happen if the TCMA system, which apparently also has some degree of engine control, loses power? The problem with interlinked circuits and systems is that sometimes, unexpected things can happen when events that were not considered actually happen. If one module, reporting to another, loses power or fails, sometimes it can "tell" the surviving module something that isn't true... My concern is where does the power to the Fuel Cutoff switches come from? Are there relays or solid-state switches (or what?) between the Panel Switches and the valves? If so, is the valve power derived from a different source, and if so, where? Are the valves solenoids, open when power applied, or something else? What is the logic involved, between switch and valve? Would you mind answering these questions so I can ponder it all further, please? If I'm wrong, I'll happily say so. ![]()
We don\x92t know yet what actually triggered the RAT from the relatively short list but every item on it means there is a serious/critical failure(s). The flight path suggests that it was a double engine failure or shutdown (commanded or uncommanded) as anything else should have left the aeroplane in a poor state but able to climb away.
1 user liked this post. |
fdr
2025-06-15T02:24:00 permalink Post: 11902058 |
Consider losing one engine on the Dream. If it is a generator that's failed let's say #2 . Do the electric fuel pumps lose power? Only in #2? Does the mechanical pump start feeding right away? If so, is there a lull? Are both engines fuel pumps supplied off one Gen?
See I think there was no simultaneous loss of both 1, 2. The odds give me a migraine. I still wonder if TCMA knows the difference between parked, rolling, rotated brakes and stowed. Only parenthetically, it didn't do this The Thrust Control Malfunction Accommodation TCMA shuts down an engine when an idle asymmetry is detected . On the ground . With thrust levers at idle . The engine in question triggers the condition when it is above idle and not decelerating normally . That is multiple failure conditions that need to have occurred in the system to allow that to occur. It is nearly as wild a circumstance as the QFA 072 suspected cosmic bit flip, except that these are supposed to be independent systems. This does have the authority when the conditions exist to turn off the noise. That is the only reason it is a subject of interest. The Thrust Asymmetry Protection gives a limited authority to reduce thrust on the surviving engine to maintain control. It would not trigger the conditions that the engines have gone silent, and hydraulics/electrics have been mussed up. That puts a spotlight on what has to go wrong on TCMA to get it to trigger outside of the conditions that it is intended to. No yaw input, no roll input, no asymmetry. That leaves either both engines running at normal TO thrust or both having a simultaneous bad day out. Giving car keys to HAL 9000 can have some issues, and cosmic radiation is around a lot. 9 users liked this post. |
Someone Somewhere
2025-06-15T02:36:00 permalink Post: 11902060 |
Difficult!? Maybe not. If very late the flaps were tagged stowed, and there was a simultaneous gear up command, with FlapDown command, the overload could have failed a GCS. Then it becomes a switching exercise. (Automatics).
Alarms Warnings Impacted EICAS, ETC. it happened long ago, but we know what happens when an engine driven generator quits ..first it bangs for awhile, then it burns itself up, then ...
Thanks for answering the question I hadn't yet asked but wanted to confirm!
I'm still sticking with "Major Electrical Fault" as my most likely cause, and this adds to my suspicions. As I understand it, the landing gear is raised / retracted by electric motor-driven hydraulic pump (pumps?). This/these would create a significant electrical load. If the plane's multi-redundant electrical system has a fault which is intermittent (the worst kind of electrical issue to diagnose), and which causes the redundancy controls to go haywire (as there are, of course, electronic controls to detect failures and drive the switching over of primary and backup electrical supplies), then this fault could to triggered by a large load coming on-line. It could even be as simple as a high current cable lug not having been tightened when a part was being replaced at some stage. The relevant bolt might be only finger-tight. Enough to work 99.99% of the time between then and now... But a little bit more oxidation, and particularly, a bit more heat (it was a hot day), and suddenly, a fault. Having worked in electronics for years, I know that semi-conductors (and lots of other components, especially capacitors [and batteries]) can also degrade instead of failing completely. Electro-static discharges are great for causing computer chips to die, or go meta-stable - meaning they can get all knotted up and cease working correctly - until they are powered off for a while. They can also degrade in a way that means they work normally a low temperatures, but don't above a certain temperature. Anyway, there MUST be ways that the redundant power supplies can be brought down, simply because, to have a critical bus powered from a number of independent sources, there must be "controls" of some sort. I don't know how it's done in the 787, but that's where I'd be looking. As there is a lot of discussion already about how the bogies are hanging the wrong way suggesting a started but failed retraction operation, and it's now confirmed that the retraction would normally have taken place at about the point where the flight went "pear shaped", I'm going to suggest that the two things are connected. More than that: I'll suggest that the Gear Up command triggered the fault that caused both engines to shut down in very short succession. Nothing the pilots did wrong, and no way they could have known and prevented it. It's going to be difficult to prove though. In addition, the 787 has four main generators and I believe the switching is segregated into at least two controllers, on top of the four separate generator control units. And again, electrical failure should not cause engine failure - consider QF32 where the wiring to the engine was mostly severed and they had to drown it with a fire truck.
Best post until now in my view. We will find out very soon I think. Gear up command triggered the instant lack of fuel to both engines. I'm not sure on how the fuel flow is dependant on the power supplies on the 787 but I genuinely believe you are very very close to what might have happened here.
Yes, thanks, I've seen a few comments to this effect, and I have to accept most of what you say. I understand that they have their own dedicated generators and local independent FADECs (or EECs), but I'm trying to use what I do know to attempt to figure this out. I know that there are Fuel Cutoff switches in the cockpit. Somehow, if switched to Off, these will cut off the fuel to the engines, "no matter what". Of course, even that's not true, as the Qantas A380 engine burst apparently (comment in this thread) showed.
Anyway, the thing I'm looking at is how the fuel cutoff switch function could have been activated in some other way. To me, it seems obvious that there are wires that run between the engine fuel shutoff valves and the cockpit / flight control panel (no doubt with relays etc in between). I don't know where those shutoff valves are located, but logic says they should be located in the fuselage, not out at the engines. I also don't know how those valves operate - are they solenoid valves or electro-mechanically driven? Nor do I know where the power to activate those valves comes from, but using my logic, if those valves close when powered off, such as solenoid valves typically do, then the power cannot exclusively come from the engine-dedicated generators. If it did, you'd never be able to start the engines so they could supply their own power to hold those valves open. So, there must be some power (appropriately) fed from the main aircraft control bus to activate those valves - if the rest of what I'm assuming is correct. Anyway, like I say, I don't know enough about the details at this point, but there are many more ways to activate or deactivate a circuit than by flicking a switch. Killing the relevant power supply, for example. A screwdriver across some contacts (for example), another. Shorting a wire to Chassis, maybe. Just trying to contribute what I can. You raise another interesting point: "TCMA notwithstanding". Could you elaborate, please? What will happen if the TCMA system, which apparently also has some degree of engine control, loses power? The problem with interlinked circuits and systems is that sometimes, unexpected things can happen when events that were not considered actually happen. If one module, reporting to another, loses power or fails, sometimes it can "tell" the surviving module something that isn't true... My concern is where does the power to the Fuel Cutoff switches come from? Are there relays or solid-state switches (or what?) between the Panel Switches and the valves? If so, is the valve power derived from a different source, and if so, where? Are the valves solenoids, open when power applied, or something else? What is the logic involved, between switch and valve? Would you mind answering these questions so I can ponder it all further, please? If I'm wrong, I'll happily say so. ![]() The valves are located in the spar (hence being called 'spar valves'. The fuel tank is immediately above the engine so it is a very short pipe for suction feeding. Tail mount engines are potentially a different story...
What\x92s the usual time frame for the release of preliminary data and report from the FDR and CVR? Is it around 6 months?
I guess if no directives come from Boeing or the FAA in the next 2 weeks, it can be presumed that a systems failure from which recovery was impossible was unlikely. 1 user liked this post. |
BrogulT
2025-06-15T03:53:00 permalink Post: 11902082 |
1 user liked this post. |
MaybeItIs
2025-06-15T04:00:00 permalink Post: 11902086 |
![]()
I believe the valves are almost all bi-stable power-open power-close. When not powered, they remain in the last commanded position.
The valves are located in the spar (hence being called 'spar valves'. The fuel tank is immediately above the engine so it is a very short pipe for suction feeding. Tail mount engines are potentially a different story... |
tdracer
2025-06-15T04:04:00 permalink Post: 11902089 |
I don't think this test is ever done during normal operations or maintenance (at least not on purpose) as it is very abusive to the engine driven fuel pump - the sort of cavitation that this causes rapidly erodes the pumping surfaces (it's SOP to replace the engine driven fuel pump after such a test). 12 users liked this post. |
BrogulT
2025-06-15T04:56:00 permalink Post: 11902104 |
I don't think this test is ever done during normal operations or maintenance (at least not on purpose) as it is
very
abusive to the engine driven fuel pump - the sort of cavitation that this causes rapidly erodes the pumping surfaces (it's SOP to replace the engine driven fuel pump after such a test).
|
tdracer
2025-06-15T05:35:00 permalink Post: 11902117 |
In that case, I would think that it is not beyond the realm of remote possibility that for whatever reason there might be at least some of these in the field that will not actually function in the suction mode. And if we are talking about simultaneous dual-flameouts then we're already in the "realm of remote possibility", so they should be looking at these unlikely causes. If they're never tested, it's simply an unknown. Discussions so far just assume that this feature works. From what you say it would not be simple to test all of the in-service engines since the test itself is destructive. Perhaps there is some way to test without grinding up the pumps.
The portion of the engine driven fuel pump that is subject to wear is the high-pressure gear pump - and excessive deterioration will become apparent in the inability to reach max TO thrust. The centrifugal pump (that part responsible for the suction feed) is relatively lightly loaded and seldom experiences excessive wear or deterioration - even when exposed to severe suction feed events. As I've posted several times, in this business you 'never say never' - but the chances that both engines fuel pumps were deteriorated to the point where they could not adequately provide suction feed fuel to keep the engines running is very, very remote. 11 users liked this post. |
Someone Somewhere
2025-06-15T06:13:00 permalink Post: 11902137 |
The engine driven fuel pumps are regularly removed and overhauled - usually when the engines go through overhaul (somewhere in the 10-20,000 hour range). The results of these overhauls are monitored, and if there is evidence of unusual deterioration, etc., that will be reflected in the recommended maintenance/overhaul intervals (BTW, this is SOP for virtually every system on the aircraft, regardless of Boeing, Airbus, etc.).
The portion of the engine driven fuel pump that is subject to wear is the high-pressure gear pump - and excessive deterioration will become apparent in the inability to reach max TO thrust. The centrifugal pump (that part responsible for the suction feed) is relatively lightly loaded and seldom experiences excessive wear or deterioration - even when exposed to severe suction feed events. As I've posted several times, in this business you 'never say never' - but the chances that both engines fuel pumps were deteriorated to the point where they could not adequately provide suction feed fuel to keep the engines running is very, very remote. Of course, those should be trivial to bench test. 1 user liked this post. |
maddog2872
2025-06-15T06:51:00 permalink Post: 11902158 |
What happens if you forget to turn on fuel pumps during preliminary prep?
|
Someone Somewhere
2025-06-15T06:56:00 permalink Post: 11902163 |
Expect all the alarms, too. 1 user liked this post. |
maddog2872
2025-06-15T07:01:00 permalink Post: 11902166 |
The 320 starts even if you forget to turn on fuel pumps. Don't ask how I know.
22 users liked this post. |
Someone Somewhere
2025-06-15T08:08:00 permalink Post: 11902212 |
A thrust reduction is not an engine failure. Engine shutdown due to an action of crew (or inaction) is not a failure.
There is no evidence of an electrical failure. What evidence? A surviving passenger thought he saw flickering lights? Give me a break. The word evidence in English has a very specific meaning. Look for the simplest explanation here and then ask why the worldwide B787 fleet is still flying with no urgent inspection requirements from Boeing or GE. Think about that "evidence". If the aircraft had flaps deployed (the crash site photos look like it), flight controls working (no indications they weren't), and the thrust levers pushed full forwards, there is very very little that will cause it to sink other than lack of thrust. For the team pointing to the RAT out as a failure indicator, it could have been deployed by the crew after the initial reduction in climb performance. I am not convinced it is deployed but it really does not make a convincing argument for any type of failure. For the children on holiday, yes I fly transport category jets, current on two types. ​​​​​​​ In general, I think it's looking like dual engine failure/shutdown cutting electrics. I agree that why it occurred is very unclear. Outside chance of total electrical failure causing dual engine failure rather than the other way around, but that would perhaps be even more concerning a design failure. Similar to Jeju, we also have what is looking increasingly like a loss of ADS-B data at the moment things went wrong, not just a loss of coverage. That gives:
I think it has been suggested that the upload only happens every 30 minutes or so. Last edited by Someone Somewhere; 15th Jun 2025 at 08:21 . |
Epsomdog
2025-06-15T08:09:00 permalink Post: 11902213 |
Best post until now in my view. We will find out very soon I think. Gear up command triggered the instant lack of fuel to both engines. I'm not sure on how the fuel flow is dependant on the power supplies on the 787 but I genuinely believe you are very very close to what might have happened here.
|
Lead Balloon
2025-06-15T08:15:00 permalink Post: 11902217 |
FIFY
Loss of electrical power
|
Someone Somewhere
2025-06-15T08:24:00 permalink Post: 11902225 |
If/when the centre tank is fully used or the pump fails, the two wing tank pumps supply the on-side engine. This happens on every flight that takes off with more than ~34t of fuel (two wing tanks) and lands with less. If neither on-side pump is operating, the pressure in the supply line drops below that of the tank and pulls open the suction check valve. The only 'reconfiguration' the pilots can do is open the crossfeed valve, or turn off pumps. 2 users liked this post. |
Someone Somewhere
2025-06-15T10:43:00 permalink Post: 11902342 |
This is probably a very stupid question, but what would happen if a BPCU fault (or other cause) led to VFSGs on opposite sides of the aircraft being connected to the same 230 VAC bus?
My understanding is that the left engine VFSGs are not synchronized in frequency or phase with the right engine VFSGs. Cross-connecting them, electrically, could be quite violent from both an electrical and mechanical perspective. Is it realistically possible that the torque shock from cross-connected VFSGs could damage their associated accessory drive trains to the extent that the associated FADEC alternators would no longer make power? In this situation, there would be a loss of aircraft electrical power due to the BPCU fault, no FADEC alternator power due to damage to the accessory drive train, and, therefore, no engine thrust. I presume each VFSG has a frangible link to protect the accessory drive train in the event the VFSG seizes up, which ought to make this loss-of-engine-thrust scenario impossible, but presumption is not knowledge, and this is a possible failure chain that doesn't involve stacking up multiple 10e-9 events. In fact, I have inadvertently "done" such a thing - all I did was switch the generator room light from one genset to the other. But whoever installed that cheap and nasty two way light changeover switch didn't realise that it sometimes did a make-before-break transfer. There was a BANG and everything instantly went dark. Every single circuit breaker on the switchboard tripped. To this day, I still don't understand why all the Load Circuit Breakers tripped as well as the generator output breakers, and no one has really supplied a clear answer. Of course, any inductive loads connected at the time would cause that, but simple incandescent light circuits? Would a couple of hundred meters of underground power cable have enough inductance to cause a breaker trip? Anyway, Yes, the results were very dramatic, and these were only a pair of 10-15kVA Single Phase 230V gensets. If this happened on that plane with 225KVA(?) generators at a couple of hundred feet in the air, I'd imagine they had no chance of recovery. Could it happen? If something had been wired up incorrectly in the transfer circuits, I'd say Yes. When a fault-related transfer occurred. Still doesn't explain what could have stopped the engines, but sheared shafts would have done it, as you say. That would be pretty strong evidence. Now, if it's true that this plane had been scavenged for parts at some stage, all the couldn't happens probably evaporate. I'd guess... I expect the VFSG shafts would be designed to fuse/slip long before the main radial shaft feeding the gearbox, as noted. But if it occurred, it would knock out not just your FADEC alternator but also the high pressure fuel pumps. Engine would stop dead near instantly. It would partly be a question of how much interlocking is present. I guess bypassing/mis-adjusting mechanical interlocks is something poor maintenance could & would do. 1 user liked this post. |
Sailvi767
2025-06-15T10:58:00 permalink Post: 11902355 |
This is probably a very stupid question, but what would happen if a BPCU fault (or other cause) led to VFSGs on opposite sides of the aircraft being connected to the same 230 VAC bus?
My understanding is that the left engine VFSGs are not synchronized in frequency or phase with the right engine VFSGs. Cross-connecting them, electrically, could be quite violent from both an electrical and mechanical perspective. Is it realistically possible that the torque shock from cross-connected VFSGs could damage their associated accessory drive trains to the extent that the associated FADEC alternators would no longer make power? In this situation, there would be a loss of aircraft electrical power due to the BPCU fault, no FADEC alternator power due to damage to the accessory drive train, and, therefore, no engine thrust. I presume each VFSG has a frangible link to protect the accessory drive train in the event the VFSG seizes up, which ought to make this loss-of-engine-thrust scenario impossible, but presumption is not knowledge, and this is a possible failure chain that doesn't involve stacking up multiple 10e-9 events. 3 users liked this post. |
old dawg
2025-06-15T11:03:00 permalink Post: 11902361 |
Retired engineer here. Following my post a while ago on the avionics electrical system I have read all the posts and also noticed mention of the hydraulics system.
Returning to my original source, which is Book 1 Introduction to B787 Avionic/Electrical, I read on p. 96 that the RAT will deploy if any of three conditions are met. https://fliphtml5.com/quwam/qhdw/Boo...ics_Electrical These conditions for deployment of the RAT specifically are: Loss of both engines Loss of power to the instrument buses Loss of all three hydraulic systems The latter one may be worth a close look because it would appear that problems took place when the wheels left the runway and I assume there was a change of states in various sensors. I surmise these sensors are different from the engine systems where both commands and power are needed to force a change of state in, say, fuel pumps. Is it the same for thrust control? It says there are three hydraulic systems but is there a common reservoir? I'm not an expert in that field but google tells me that B787 has a bootstrap reservoir system which I understand to mean that a pressure of 5000 psi is maintained using a piston arrangement. At this point think timeline, and changes of states. There is an operational change when the wheels leave the ground. The associated sensors would send that data to the CCS. What was sent? Maybe the CCS read Hydraulic L + Hydraulic R + Hydraulic C = incorrect or fail, which would trigger deployment of the RAT. What would the electrical and control system do then? More importantly what exactly did all the systems do on this aircraft following such an event. Was there a problem with the fluid in the hydraulics? Does hydraulic fluid ever 'go off' in very hot conditions. Or maybe there wasn't as much fluid in there than there should have been? How would hydraulics systems be compromised if indeed that was the case. All speculation - but forensic system analysis is a bit like that. Finally - what was the noise the survivor heard? Was it before or after the lights flickered? It may have been a bit of the airframe hitting something and snapping. The survivors in the doctor's hostel heard a noise too which may be jet engines running. They would know the difference between that and other noises being close to an airport. Need a timeline for everything here. Apologies for the long post. Just my thoughts. RIP to all who didn't survive. 2 users liked this post. |
Page Links: First Previous 1 2 3 4 5 6 7 8 Next Last Index Page