Posts about: "Fuel Pumps" [Posts: 151 Pages: 8]

GroundedSpanner
2025-06-21T15:24:00
permalink
Post: 11907841
Resubmitting following some Mod Feedback and a significant re-write. Yes, it is speculative

I have a theory that I'd like to share. It brings together various pieces of known information, along with 30+ years of my experience as an aircraft engineer that forms a plausible (IMO) explanation of what may have happened.

We Know - From the Video's and the ADSB Data:
That up to and for the first few seconds after take-off appears relatively normal.
The AC appears to lose thrust without e.g. birdstrike or other spectacular smoke /fire producing event.
That the RAT deployed.
That the pilot reported 'Thrust not achieved' [Edit - We dont 'know' this - it is heavily reported]

We can see that the AC had a relatively busy schedule in the few days prior to the accident flight, so there was no significant downtime for maintenance activities that could have caused incident.
The AC flew DEL-CDG on 11 Jun with quite a racy turnaround in CDG of 1h12m. The centre tank would have been empty at CDG on arrival, and would have been partially filled for the return CDG-DEL.
CDG-DEL Arrived 01:47 am IST. Again the Centre Tank would have been empty. But quite a bit of fuel in the wings.
8 Hrs later, at 09:48 am IST the AC departed DEL-AMD. For such a short-hop, Fuel upload would have been minimal, merely a 'topping up' if at all. Certainly nothing into the Centre Tank.
DEL That night was fairly hot and humid - 57% at 02:30, 54% at 05:30, 44% at 08:30. That wing tank fuel could have picked up a fair amount of water.

The flight DEL-AMD would have only used the wing pumps. Thus any water in that 'overnight' fuel would have been vigorously stirred and evenly suspended. At concentrations that would cause no ill-effect at all.

The AC was on the ground at AMD for 2 Hrs, from 11:17am to 1:17 pm IST. The AC would have re-fuelled, first filling up the wing tanks to the top, then filling the centre-tank to whatever quantity necessary. There was enough time for water in the wing tanks to settle out.

The B787 Fuel system has pumps in the wing tanks, and pumps in the centre tanks. The Centre Tank pumps are also known as 'override' pumps because they output a higher pressure than the wing tank pumps, thus ensuring that with all pumps running, the centre tank fuel is used first.
Should the centre tank pumps stop, due to either filure or running out of fuel to pump, the wing tank pumps then produce the pressure.
In the event that all pumps stop running (e.g. an electrical failure), the engines will suck the fuel from the wing tanks. The 'sucked' fuel comes from a dedicated pipe in each tank through the 'Suction Feed Check Valve' (so that pumped fuel doesn't just exit through the suction tube). The suction tube pickup is in a slightly different position to the wing pump pickups.

It is conceivable to me that the suction tube pickup could have been immersed in water, settled out from the fuel in the wing tanks.

Then - at start-up of the aircraft in AMD, The engines would have been supplied with fuel from the centre tank. Fresh Fuel. All OK. Wing pumps running and doing not much. But, I speculate, the suction pick-ups immersed in water. Waiting.

Start up and taxi out was all normal. Runway acceleration up to v1 appears normal. V1 - Rotate - (positive rate - Gear up? - Not my debate).
But somewhere around that time, I speculate that a significant electrical failure occurred. Enough for the RAT to deploy. Enough for the fuel pumps to stop. I'll not speculate on the cause. We know that it can occur, that's why the RAT was designed to operate.

The engines at that point were at TOGA thrust. In a significant electrical failure, the engines will keep on doing what they were last told. Keep that thrust stable. So the AC climbed for a few seconds more. The pilots did what they were trained to do for a power failure, manage that, thankfully the engines were still going well...

But there was only so much 'good' fuel in the lines. The engines sucking fuel themselves, the fuel would now be coming from the suction pickups, a different supply. A supply likely heavily water contaminated. It would take a few seconds for that contaminated fuel to actually reach the engines, but when that contaminated fuel hit, Thrust would have been significantly reduced. The EEC's would have been doing their best to maintain the thrust, firewalling the throttles would probably have little effect at that exact moment. The engines would have likely worked through that bad fuel in a shortish period of time, but a period of time that our crew did not have. A fully loaded aircraft producing less than take-off thrust, is not sustaining enough thrust for continued flight. The rest - is down to the skill of the crew in deciding exactly where to hit the ground within the very narrow range of choice they had.

Last edited by GroundedSpanner; 21st Jun 2025 at 17:52 . Reason: Thrust not achieved comment is not proven.

14 users liked this post.

violator
2025-06-21T15:42:00
permalink
Post: 11907854
Originally Posted by GroundedSpanner
Resubmitting following some Mod Feedback and a significant re-write. Yes, it is speculative

I have a theory that I'd like to share. It brings together various pieces of known information, along with 30+ years of my experience as an aircraft engineer that forms a plausible (IMO) explanation of what may have happened.

We Know - From the Video's and the ADSB Data:
That up to and for the first few seconds after take-off appears relatively normal.
The AC appears to lose thrust without e.g. birdstrike or other spectacular smoke /fire producing event.
That the RAT deployed.
That the pilot reported 'Thrust not achieved'

We can see that the AC had a relatively busy schedule in the few days prior to the accident flight, so there was no significant downtime for maintenance activities that could have caused incident.
The AC flew DEL-CDG on 11 Jun with quite a racy turnaround in CDG of 1h12m. The centre tank would have been empty at CDG on arrival, and would have been partially filled for the return CDG-DEL.
CDG-DEL Arrived 01:47 am IST. Again the Centre Tank would have been empty. But quite a bit of fuel in the wings.
8 Hrs later, at 09:48 am IST the AC departed DEL-AMD. For such a short-hop, Fuel upload would have been minimal, merely a 'topping up' if at all. Certainly nothing into the Centre Tank.
DEL That night was fairly hot and humid - 57% at 02:30, 54% at 05:30, 44% at 08:30. That wing tank fuel could have picked up a fair amount of water.

The flight DEL-AMD would have only used the wing pumps. Thus any water in that 'overnight' fuel would have been vigorously stirred and evenly suspended. At concentrations that would cause no ill-effect at all.

The AC was on the ground at AMD for 2 Hrs, from 11:17am to 1:17 pm IST. The AC would have re-fuelled, first filling up the wing tanks to the top, then filling the centre-tank to whatever quantity necessary. There was enough time for water in the wing tanks to settle out.

The B787 Fuel system has pumps in the wing tanks, and pumps in the centre tanks. The Centre Tank pumps are also known as 'override' pumps because they output a higher pressure than the wing tank pumps, thus ensuring that with all pumps running, the centre tank fuel is used first.
Should the centre tank pumps stop, due to either filure or running out of fuel to pump, the wing tank pumps then produce the pressure.
In the event that all pumps stop running (e.g. an electrical failure), the engines will suck the fuel from the wing tanks. The 'sucked' fuel comes from a dedicated pipe in each tank through the 'Suction Feed Check Valve' (so that pumped fuel doesn't just exit through the suction tube). The suction tube pickup is in a slightly different position to the wing pump pickups.

It is conceivable to me that the suction tube pickup could have been immersed in water, settled out from the fuel in the wing tanks.

Then - at start-up of the aircraft in AMD, The engines would have been supplied with fuel from the centre tank. Fresh Fuel. All OK. Wing pumps running and doing not much. But, I speculate, the suction pick-ups immersed in water. Waiting.

Start up and taxi out was all normal. Runway acceleration up to v1 appears normal. V1 - Rotate - (positive rate - Gear up? - Not my debate).
But somewhere around that time, I speculate that a significant electrical failure occurred. Enough for the RAT to deploy. Enough for the fuel pumps to stop. I'll not speculate on the cause. We know that it can occur, that's why the RAT was designed to operate.

The engines at that point were at TOGA thrust. In a significant electrical failure, the engines will keep on doing what they were last told. Keep that thrust stable. So the AC climbed for a few seconds more. The pilots did what they were trained to do for a power failure, manage that, thankfully the engines were still going well...

But there was only so much 'good' fuel in the lines. The engines sucking fuel themselves, the fuel would now be coming from the suction pickups, a different supply. A supply likely heavily water contaminated. It would take a few seconds for that contaminated fuel to actually reach the engines, but when that contaminated fuel hit, Thrust would have been significantly reduced. The EEC's would have been doing their best to maintain the thrust, firewalling the throttles would probably have little effect at that exact moment. The engines would have likely worked through that bad fuel in a shortish period of time, but a period of time that our crew did not have. A fully loaded aircraft producing less than take-off thrust, is not sustaining enough thrust for continued flight. The rest - is down to the skill of the crew in deciding exactly where to hit the ground within the very narrow range of choice they had.
The 787 wing tanks have a water scavenge system.


GroundedSpanner
2025-06-21T17:11:00
permalink
Post: 11907910
Originally Posted by violator
The 787 wing tanks have a water scavenge system.
Yes - Yes it does.
However, that water scavenge works by picking up fluid from just next to at aft boost pump inlet, and dripping it into the aft boost pump inlet. Powered by the motive flow of the aft boost pump.
Whereas the suction feed inlet, is - although not far away - in a different location that could itself be sitting in water.

After a good look at the SDS - It seems like the system is assuming a small amount of water, with fuel flowing.
But when the centre tank override pumps are doing all the supply, its the same fluid being circulated in the same bay. If there is a 'lot' of water, then the aft boost pump is just circulating water (or very water rich fuel).

I think the key point of my post was that in an significant power failure, when the pumps stop working, the fuel supply is changed from centre to wing tanks, that it will take a few seconds from after the pumps stop working, to the fuel being received at the engines to be coming from a different source. That source being the bottom of the wing tanks. If the fuel quality is very different in the 2 different locations, the engines are going to struggle.

1 user liked this post.

Shep69
2025-06-21T18:58:00
permalink
Post: 11907986
Originally Posted by Capn Bloggs
I would take that post by Crossky with a grain of salt. No part of his post made sense and I can only assume he is not a 787 pilot despite claiming to be. "Fuel starvation if pumps aren't turned off, not in my manual but I read about a procedure on the Internet", it's loony stuff.

.
My understanding of the 78 fuel system is it\x92s very similar to the 777; assuming center tank fuel all pumps are turned on for takeoff (the center tank override pumps are at higher pressure than wings so it feeds first). If all electrical power is lost at lower altitudes engines suction feed just fine (probably from the wing tanks).
sycamore
2025-06-21T20:32:00
permalink
Post: 11908032
It would be nice if there were some `cutaway` drawings of the centre tank,not generic` block `diagrams,and it`s venting/pressurising system..If anyone has such or knows where it can be found ,I`d be grateful..I presume it is a metal `box`,but sealed,not with an internal Bag-tank...How often are they internally inspected? Presumably by a `robot`...? Is there a `procedure`,either by aircrew or engineering to check that the `suction` system works..ever.ie after landing are all the fuel pumps turned off,(each engine /not together),or engine `run-ups` after a big `maintenance ` job...?...I have a vision of a `hissing Sid` finding a nice vent to get into..not that uncommon in the tropics...

1 user liked this post.

ignorantAndroid
2025-06-21T20:40:00
permalink
Post: 11908039
Originally Posted by Aerospace101
Without going round the hamsterwheel again does anyone have an actual reference for this? Because I've gone back through each of tdracer's very informative posts about this see here and there is a discrepancy in the two points he makes below in adjacent posts. Is tdracer talking about the same HPSOV valves? Can anyone confirm that with both AC power loss and and a temporary DC power loss there are no critical engine related shutoff valves that will fail safe (unpowered) in a closed position?
There's actually no discrepancy.

The HPSOV is made up of 2 parts which I'll call the main valve and the pilot valve. The pilot valve is actuated by a solenoid and supplied with fuel from the high-pressure side. The main valve is held shut by a spring. As long as the pilot valve is open and the high-pressure fuel pump is operating, fuel flows through the pilot valve, then pushes and holds the main valve open. The pilot valve and solenoid are 'latching,' i.e. they maintain their position until electrical power is applied. However, a certain pressure still has to be provided by the pump in order to hold the main valve open. Note that when I say 'high-pressure fuel pump,' I'm referring to the one that's mechanically driven by the engine's high-pressure shaft, not any of the electric pumps.



Note: The HPSOV is mistakenly labeled as 'PSOV' in this diagram.

7 users liked this post.

Mechta
2025-06-21T23:23:00
permalink
Post: 11908147
Originally Posted by sycamore
It would be nice if there were some `cutaway` drawings of the centre tank,not generic` block `diagrams,and it`s venting/pressurising system..If anyone has such or knows where it can be found ,I`d be grateful..I presume it is a metal `box`,but sealed,not with an internal Bag-tank...How often are they internally inspected? Presumably by a `robot`...? Is there a `procedure`,either by aircrew or engineering to check that the `suction` system works..ever.ie after landing are all the fuel pumps turned off,(each engine /not together),or engine `run-ups` after a big `maintenance ` job...?...I have a vision of a `hissing Sid` finding a nice vent to get into..not that uncommon in the tropics...
The Centre Wing Tank is as it says the centre of the wing. The top and bottom skins continue the aerofoil section through the fuselage, with the front and rear spars' webs forming the fore and aft ends. The inner surfaces of the top and bottom skins have spanwise 'stringers' (well that's what we called them at Airbus), which are 'I' sections attached to the inside to provide stiffness to the skins. The inner faces of the centre wing tank are the tank. There is no separate fuel bag.
The tank is unpressurised. It is vents to atmosphere throughout the flight. There is a fuel tank inerting system which feeds nitrogen-enriched air into the ullage (air space above the fuel). On the 787 it does this on all tanks. Other airliners only do it on the centre wing tank (and any other fuselage tanks if fitted).
Entry to the tanks once they have had fuel in, generally needs breathing apparatus once it has been in service.

Pictures of the inside of a completed 787 Centre Wing Tank aren't easy to find. This shows either the upper or lower skin with its stringers.



2 users liked this post.

GroundedSpanner
2025-06-22T00:15:00
permalink
Post: 11908173
Originally Posted by BrogulT
I don't want to refute your theory, but given your 30 years of experience---presuming it is relevant--I'd ask you to clarify a few things.

First, water in fuel is not a novel concept and I would presume that the designers of the 787 knew about it. You've simply stated that water might collect and settle out, but how much water might you expect under those conditions (57% humidity doesn't seem terribly high to me) and what features and procedures are already there to mitigage water contamination issues? Your theory would imply that there basically aren't any. IDK how the tank venting system works, but the idea that some huge amount of water could have condensed in the tank from the outside seems preposterous.

Second, how much water do you think it would take to cause a sustained flameout in one of those engines? Remember that they have automatic continous relight, so you're going to have to sustain your flame suppression long enough for them to wind down completely. I think those engines were probably using something like 2 gallons per second of fuel along with 250lbs of air heated to over 1100F. Any fuel in the mix would burn and the water would be converted to steam so you'd need mostly water for a long time. So if you think a hundred gallons of water could have gotten into each tank then perhaps I'd buy your theory--which, btw, does fit the known facts pretty well. But I think that short of some woeful neglect, Boeing and AI already know about and have methods of dealing with water contamination. At least I hope so.
OK - Fair Challenges - good post, I'll have a go at answering and simultaneously expanding my own thoughts. In fact I'm not having a go at you, I'm more working my theory....

Experience. Without wishing to dox myself, I've worked in engineering at a major airline from apprentice through (in no particular order) Line Maintenance, Heavy and Light Maintenance, to technical support and maintenance control on both Boeing and Airbus products, with various qualifications and authorisations along the way. [Hmm - Scrap this sentence?]On the day 9/11 occurred, I should have been making modifications inside a fuel tank instead of staring at the TV with mouth on the floor.
However, I would describe my experience as broad, yet shallow in respect to this incident. Some of my fleet I know every rivet. Some of my fleet I've only ever seen from a distance. I don't touch airplanes for a living any more. B787 though - is not my area of specialty. I'll dig in, but am not the expert. I am not a systems design engineer, so precise numbers and flow rates, are not what I do. But what the systems do, how they operate, what they look like, smell and taste like... yeah, I'm not a muggle. And I do have access to all the manuals and know how to use them. And - let me be clear, I am speculating. I was advancing a theory. It WILL be some flavour of wrong. The investigation will reveal all.

I Agree, Water in fuel is not a novel concept. Aircraft fuel tanks attract water - fact. How much? It varies. I've sumped tanks and got no water, I've seen drops of water beading about in the bottom of a gallon jug, I've seen gallons of water. I've been so covered in fuel I cant smell it or think straight and taken gallon after gallon not being able to tell if its fuel or water. I also agree that 57% humidity doesn't seem particularly high - its not south east Asian jungle levels - but I'm not an expert at humidity, 32Deg c at 57% humidity at 02:30 am is not going to be comfortable for me though. I looked at recent weather in DEL, and those values were at the higher end of the range.
Further, I believe the prevailing weather conditions on the ground are less important when it comes to the volume of water getting in. Fuel is cold, or gets damn cold during a 9 Hr flight. Fuel Temperature Management is an issue for our Drivers. So as the fuel is used at altitude, Air enters the tank through NACA Ducts in the outboard end of the wing. Its beneficial to maintain a slight positive pressure, amongst other things to reduce evaporation. (Added complication, there is also the Nitrogen Enrichment system due to TWA800 - but that's more about processing the air in the tank to change the properties and make it non-explosive). Then as the aircraft descends, more air enters as the air pressure increases. Its the humidity of that air in the descent that is going to determine the volume of water entering the tank and potentially the fuel. The water in the air condenses on the sides of the tank because of the cold post-flight fuel. It doesn't dissolve into the fuel, but sinks to the bottom. Ground temperature / humidity and time will likely affect how much water condenses out of that air while on the ground. There won't be a huge amount of air exchange on the ground. Likely if the AC landed at 2am, then from sunrise as the tank warmed up, there would actually be a flow out of the vents.

What Features and procedures are there to mitigate Water? I apologise if my post gave the impression that there are no mitigation processes. There are. Water is well understood in the industry.
Well for a start, Features / Design. The Aircraft has a water scavenge system. Water doesn't mix with fuel, it sinks to the bottom being about 20% denser than fuel, so at the very lowest point in the tank, the water scavenge system (Powered by the Aft Fuel Pump through a jet pump, a venturi like system) will suck up the 'fluid' at the very lowest point, where the water would collect and in Boeings words 'drip' that fluid into the path of the pump pickup inlet (but I'd describe it more as a 'squirt'). The idea being that a small amount of water injected into the fuel will be consumed by the engines harmlessly.
There is also agitation. The wing tank pumps are pretty much running constantly, from before engine startup to after engine shutdown. The pumps are quite violent to the fuel and supply more pressure then the engine could ever need. Any excess pressure is dumped right back into the tank, quite close to the pump, in a direction that would further stir up the fuel and help break up any water into suspended droplets.
This all works if there is a small amount of water in the fuel. The water scavenge pickup is right next to the pump inlet, but a bit lower. Little bits of water get managed. Looking at the pictures of the system, I'd say a couple of gallons of water would do no harm at all.
But if there was significantly more water in that tank. Guessing 10-30 + gallons, then the pump would be circulating water, or highly water rich fuel.

Then there's the suction pickup. Its in the same 'bay' as the aft fuel pump and located a little 'higher' than the pump inlet and water scavenge inlet. But also located between stringers that can separate out the settled water ( I wish I could share the pictures, but more than my job is worth ) I can imagine the suction pickup being in a pool of 'stagnant' water.

I also saw a post from Metcha about the scavenge system blocking with Algae - I don't know about that (B787 not my fleet). But possible that could aggravate things. There's also the reports of the Indian AAIB looking at the Titan Biocide incident. Its possible that might be related and could modify the theory.

Procedures - There's the (at my airline weekly I think) procedure to 'sump' the tanks. There are drain points in the tank. Valves that you can push in with a tool and fluid drains. As described earlier (and videos exist on YouTube), you drain about a gallon of fluid and examine it for water. Most often in temperate climates (my experience), there's a few 'beads' of water in the bottom of the jug, moving about like mercury. Except when there's more. Sometimes there's a clear line in the jug, half water, fuel above. And sometimes a gallon of water, that smells like fuel. You drain it until you are sure there's no water.

Could 'that much' water have condensed in the tank? Well - There's the question. I guess the basis of the theory is that on descent into DEL, the wing tanks picked up some very humid air, which settled water into the tanks through the night. Then, as the theory I posited must work, the wing pumps must have circulated and suspended that water into the fuel.
By design, the water from the CDG-DEL arrival should have been consumed in the DEL-AMD Sector. But desperately clinging to defending my theory (I appreciate this is a hole), lets assume that at DEL the pumps were running for a long time. Lets assume that the pumps allowed the water to be dispersed within the tank prior to being used through the engines. Then - in the DEL-AMD sector, the wing tanks could have picked up more water.

How much water would cause a sustained flameout? I never posited a sustained flameout. I posited a significant reduction in thrust. Listening back to the rooftop video, which at first we were all listening for evidence of RAT, there's also a rhythmic pop-pop-pop of engines struggling. I think the engines were running, albeit badly. Heavily water contaminated fuel will do that. It doesn't have to be 100% water. Just enough water to make the engine lose thrust. Your 2 gallons per second figure assumes the engine running at full flow. I'm not a figures man, I'll not challenge that, I do recall flowmeters at max thrust spin like crazy. But an engine struggling due to a high perrcentage of contamination, is that using 2 gal/sec? or just trying to? What happens if there is e.g. 20% water in the fuel?

There are also reported incidents of engine flameout / thrust reduction that have all happened at altitude. Incidents that have been recovered due to the altitude and time available. I Posited that the engines would have eventually regained full thrust once the contamination worked though. But 30 seconds of rough engine is very different at 40,000 feet than it is at 100 feet.

The theory also relies on a second part - the electrical failure. That the electrical failure causes the fuel supply to switch, a few seconds after the failure. We go, at the point of electrical failure from a pumped centre tank supply to a sucked wing tank supply. It takes time for that different fuel to reach the engine.

Ive written enough and am tired. Must stop now.

11 users liked this post.

Lonewolf_50
2025-06-22T00:41:00
permalink
Post: 11908191
Originally Posted by GroundedSpanner
Procedures - There's the (at my airline weekly I think) procedure to 'sump' the tanks. There are drain points in the tank. Valves that you can push in with a tool and fluid drains. As described earlier (and videos exist on YouTube), you drain about a gallon of fluid and examine it for water. Most often in temperate climates (my experience), there's a few 'beads' of water in the bottom of the jug, moving about like mercury.
Except when there's more.
Sometimes there's a clear line in the jug, half water, fuel above. And sometimes a gallon of water, that smells like fuel. You drain it until you are sure there's no water.
Yeah, some fuel samples make you go "Whaaat?" And then you keep draining fuel to see how much is in there, and you call up the Maintenance Control folks and tell them "We have a bad sample out here, call those idiots at the fuel farm..."
Could 'that much' water have condensed in the tank? Well - There's the question. I guess the basis of the theory is that on descent into DEL, the wing tanks picked up some very humid air, which settled water into the tanks through the night. Then, as the theory I posited must work, the wing pumps must have circulated and suspended that water into the fuel.
By design, the water from the CDG-DEL arrival should have been consumed in the DEL-AMD Sector.
But desperately clinging to defending my theory (I appreciate this is a hole), lets assume that at DEL the pumps were running for a long time.

Lets assume that the pumps allowed the water to be dispersed within the tank prior to being used through the engines. Then - in the DEL-AMD sector, the wing tanks could have picked up more water.

How much water would cause a sustained flameout?

I never posited a sustained flameout. I posited a significant reduction in thrust. Listening back to the rooftop video, which at first we were all listening for evidence of RAT, there's also a rhythmic pop-pop-pop of engines struggling.

I think the engines were running, albeit badly.

Heavily water contaminated fuel will do that. It doesn't have to be 100% water. Just enough water to make the engine lose thrust. Your 2 gallons per second figure assumes the engine running at full flow.

I'm not a figures man, I'll not challenge that, I do recall flowmeters at max thrust spin like crazy. But an engine struggling due to a high percentage of contamination, is that using 2 gal/sec? or just trying to? What happens if there is e.g. 20% water in the fuel?

There are also reported incidents of engine flameout / thrust reduction that have all happened at altitude. Incidents that have been recovered due to the altitude and time available. I Posited that the engines would have eventually regained full thrust once the contamination worked though. But 30 seconds of rough engine is very different at 40,000 feet than it is at 100 feet.

The theory also relies on a second part - the electrical failure.

That the electrical failure causes the fuel supply to switch, a few seconds after the failure. We go, at the point of electrical failure from a pumped centre tank supply to a sucked wing tank supply. It takes time for that different fuel to reach the engine.
I like the cut of your jib.
Not sure if you are right, and not familiar enough with 787 to check the fuel flow logic, but a friend of mine dead-sticked a single engine trainer into a field due to water in the fuel ... 20 minutes after takeoff.
It could have happened earlier.

2 users liked this post.

MaybeItIs
2025-06-22T23:35:00
permalink
Post: 11908907
Originally Posted by FullWings
That\x92s the nature of a common mode bug. If the software was vulnerable to Mars being in the house of Uranus, the scent of lilacs and the DOW being less than 42,000 then you\x92d expect the failure to occur everywhere when these conjoined. Same when an aeroplane\x92s systems and/or the environment present data that triggers an unplanned/unforeseen response in something like an EEC/FADEC. The experts still appear to think that this is unlikely but we have been presented with an unlikely occurrence...
I have to both agree and disagree with both this and the next post by TryingToLearn.

Yes, there may be (let's assume is) "identical" FADEC/TCMA hardware and firmware on both engines, but if the Left Engine is subject to Mars in the house of Uranus (wink wink), then the Right Engine cannot be, maybe it's Venus in the same House. This is simply because the Left engine TCMA 'contraption', I'm going to call it, is monitoring Left Engine Conditions (Shaft Speed, T/L setting / position data - Right or Wrong, and calculating and comparing accordingly against its internal map) while the opposite TCMA "device" is monitoring and calculating etc, Right Engine Conditions. There are some things in common, but (I say) it's virtually impossible for the Engine Conditions being individually monitored to be identical in both engines.

The Thrust Levers are electro-mechanical devices, almost certainly at this stage pushed by a somewhat squishy human hand, likely with a slight offset. What is the probability that those two levers are in identical positions, and even if they are, that the calibration (e.g. "zero points") of both levers are identical, and that the values they output (response slopes/curves) are exactly matching in every matching point in their individual travels? That's just one aspect, but consider the engines. They are different ages. Have different amounts of wear. They have separate fuel metering valves (or other names), separate HP Fuel pumps (and, I guess relief valves?), all also subject to wear), and each has a host of other, correspondingly paired, sensors, (maybe of different makes and certainly of different ages and different calibrations and response curves) from which each FADEC, supposedly independently of the TCMA, adjusts the fuel metering device settings and resulting engine power, and shaft RPMs follow in some other slightly non-matching way.

Sure, I would completely agree that the two engines and their calculated Throttle Lever positions to Shaft RPMs are always going to be similar during normal, matched operation, and they will very likely dance with each other, maybe one 'always' (75% of the time, say) leading during one dance (TO, say) with the other leading in dancing to a different tune (descent, say).

To me, the fact that this appears to have been an almost simultaneous dual engine failure, pretty much, for me, rules out a FADEC/TCMA firmware bug, especially as there don't seem to be any reports of even a single engine mid-air TCMA shutdown.

HOWEVER, and I want to stress this, that doesn't rule out the possibility that both TCMAs shutdown their respective engines simultaneously. Any lack of simultaneity observed would be due to those slight differences in other pieces of hardware, such as the time for one Shutoff valve to close versus the other.

As far as I know, there isn't enough information on what's actually inside those TCMA Black Boxes to say anything for sure, but here's a thought, which I think has been alluded to, or the question asked, here in one or other thread, earlier.

What does the TCMA firmware do when an engine is already running at a high power setting and TWO things occur in quick succession? I suspect this kind of event is a highly probable cause, but these two events have not occurred close enough together, or ever, before.

Imagine this: Plane taking off, Throttle Levers near Full Power, Engines performing correctly, also near Full Power, Rotation etc all normal, plane beginning to climb, positive rate achieved.

Pilot calls GEARUP. GearUp, activated.

The Gear Retract sequence begins. Due to some unforeseen or freshly occurring (maybe intermittent short or open circuit) linkage between the gear Up sequence and the WOW or Air/Ground System, the signal to both TCMAs suddenly switches to GROUND. All "good", so far, as the engine RPMs match the Throttle Lever settings and TCMA doesn't flinch. The plane could be in a Valid Takeoff sequence, so it had better not! But it does make a bit of sense. How is WOW / Air/Ground detected? Somewhere near the Landing Gear, I assume.

HOWEVER, now, a moment later, and perhaps due to a related system response, the Thrust Levers suddenly get pulled back to Idle, whether by man or Machine.

What would you expect the TCMA system to do? I would guess, fairly soon thereafter, two, independent, Fuel Cutoffs... Though I fully admit, I'm guessing based on a severe lack of knowledge of that Firmware.

Ok, no need for further explanation on that point, but I did refer to TCMA unflatteringly as a contraption, earlier. Last night (regrettably, before bed) I started looking at the TCMA Google Patent. Let's just say, so far, I'm aghast! My first impressions are bad ones. How did this patent even get approved? What I suspect here, now, is not a Firmware bug, but a serious Logic and Program Defect. But we'd have to see what's inside the firmware.

When I get more time, I'll dig deeper.

1 user liked this post.

AAKEE
2025-06-29T16:25:00
permalink
Post: 11913116
Murlidhar Mohol Interviewed (Civil aviation minister)

This is some news:


we will be able to ascertain if it was an engine problem or fuel supply issue or why both the engines had stopped functioning.
Civil Aviation Murlidhar Mohol interviewed
Musician
2025-06-30T06:32:00
permalink
Post: 11913383
Searching the web, I found out that regulations concerning new FDR require parameter 35g "fuel cut-off lever position" to be recorded. I also found that for a 2003 event with a 757, this was recorded (as was fuel flow).

I expect that this is also true for the 787. Can anyone confirm this?

NSEU
2025-06-30T13:59:00
permalink
Post: 11913644
Originally Posted by Phantom4
Have the spring loaded Fuel Shut Off Valves been examined by GE on both engines???
Why would spring loaded valves fail on both engines? The final valve in the GEnx Fuel Metering Unit (FMU) before the fuel flow meter and things like the fuel nozzles, is called the HPSOV and is spring loaded to closed, but fuel from the Fuel Metering Valve (FMV) can keep it open with minimal pressure (certainly enough presssure for engine start). Tank electric pumps and the engine-mounted, mechanically-driven two-stage pump supply fuel to the Fuel Metering Valve. During main tank pump failure, the engine mounted pump suction feeds the engine. There are altitude limitations during climb (according to the FCOM).

There are several ways that the HPSOV can close:
An EEC (engine ECU) can close the upstream Fuel Metering Valve (FMV) electronically, so the HPSOV will lose its opening pressure.
The HPSOV can be acted on by a Shutoff Solenoid Valve (which directs fuel pressure in an opposite manner to the pressure coming from the Fuel Metering Valve).

Unfortunately, the diagram I am using is truncated, and I can't see if the Shutoff Solenoid Valve is magnetically latched in its last commanded position like typical fuel shutoff valves. Nor can I see what controls it. I suspect things like the respective cockpit fire handle and fuel cutoff lever, but also EEC commands.

There is probably a copyright on the diagram, so I won't post it here. Perhaps someone can fill in the gaps for me?
adfad
2025-06-30T15:49:00
permalink
Post: 11913716
Originally Posted by silverelise
India's Minister of State for Civil Aviation appears to be confirming in this interview that the cause of the accident was a dual engine failure. Which is, I think, the first vaguely official confirmation of what happened that has been released? He also confirmed that all the data from the recorders has been downloaded and is being processed by the Indian AAIB, no boxes have been sent abroad.
The 30 day deadline for the preliminary report is July 12th.
It's hard to find a full and reliable translation of his statement but here is another snippet from Yahoo (I can't post links sorry)

The minister called the crash a \x93rare case\x94 and, referring to claims by veteran pilots and experts that a dual-engine failure may have led to the crash, said: \x93It has never happened that both engines have shut down together.\x94 \x93Once the report comes, we will be able to ascertain if it was an engine problem or fuel supply issue or why both engines had stopped functioning.
I think it's very important to define "engine failure" vs e.g., reduced thrust - BA38 for example was described as "restricted fuel flow when thrust was demanded" and there was no evidence of engine driven generator power stopping as the engines were still running at idle at impact. It's pretty clear from the available evidence that Air India lost electrical power within 20 seconds of leaving the ground, and based on the landing gear orientation theories that time may be significantly shorter <10 seconds.
GroundedSpanner
2025-06-30T21:18:00
permalink
Post: 11913900
Originally Posted by Sailvi767
It would go against every aspect of training for a professional crew to deploy the rat below 400 feet. Further if you put 100 crewmembers in a simulator on takeoff and said deploy the rat manually I would bet not a single crew member could find the rat deploy switch and activate it in under 5 seconds and maybe 2 or 3 in 10 seconds.
Yes, but The RAT doesn't have to be deployed manually.
It can auto-deploy in a significant electrical failure.
The theory I'm working is that, given the configuration of the aircraft, if there is a significant electrical failure (sufficient for the RAT to auto-deploy). The aircraft fuel pumps are lost. Approx. 7ish seconds after those fuel pumps are lost (if the engines are at TOGA), the fuel being received by the engines is arriving from a different source, a potentially contaminated source. I believe that the engine failure is a secondary result of the power loss (with specific circumstances).
But this all hinges on whether the engines were trying to run, or commanded off. Hence the request for interpretation of the sound.

1 user liked this post.

za9ra22
2025-06-30T22:04:00
permalink
Post: 11913913
Originally Posted by GroundedSpanner
....The theory I'm working is...
that, given the configuration of the aircraft
What configuration, specifically?
if there is a significant electrical failure (sufficient for the RAT to auto-deploy)
Caused by what?
The aircraft fuel pumps are lost
Didn't I read somewhere in the wiki, that the engines will continue to suck fuel?
the fuel being received by the engines is arriving from a different source
Which is?
a potentially contaminated source
Contaminated with what, and how? And why were no other aircraft affected?
I believe that the engine failure is a secondary result of the power loss (with specific circumstances)
Which specific circumstances?

It isn't that your suppositions are necessarily bad ones, but that they seem a bit of a stretch. Of course I'm no expert, hence asking.

Last edited by za9ra22; 30th Jun 2025 at 22:19 .

2 users liked this post.

GroundedSpanner
2025-06-30T22:21:00
permalink
Post: 11913922
Originally Posted by za9ra22
What configuration, specifically?

Caused by what? /
Didn't I read somewhere in the wiki, that the engines will continue to suck fuel? / Which is?
Contaminated with what, and how? And why were no other aircraft affected?
Which specific circumstances?
Here's an answer I typed earlier, that covers most of the questions. Was written before today though.

Originally Posted by GroundedSpanner
OK - Fair Challenges - good post, I'll have a go at answering and simultaneously expanding my own thoughts. In fact I'm not having a go at you, I'm more working my theory....

Experience. Without wishing to dox myself, I've worked in engineering at a major airline from apprentice through (in no particular order) Line Maintenance, Heavy and Light Maintenance, to technical support and maintenance control on both Boeing and Airbus products, with various qualifications and authorisations along the way. [Hmm - Scrap this sentence?]On the day 9/11 occurred, I should have been making modifications inside a fuel tank instead of staring at the TV with mouth on the floor.
However, I would describe my experience as broad, yet shallow in respect to this incident. Some of my fleet I know every rivet. Some of my fleet I've only ever seen from a distance. I don't touch airplanes for a living any more. B787 though - is not my area of specialty. I'll dig in, but am not the expert. I am not a systems design engineer, so precise numbers and flow rates, are not what I do. But what the systems do, how they operate, what they look like, smell and taste like... yeah, I'm not a muggle. And I do have access to all the manuals and know how to use them. And - let me be clear, I am speculating. I was advancing a theory. It WILL be some flavour of wrong. The investigation will reveal all.

I Agree, Water in fuel is not a novel concept. Aircraft fuel tanks attract water - fact. How much? It varies. I've sumped tanks and got no water, I've seen drops of water beading about in the bottom of a gallon jug, I've seen gallons of water. I've been so covered in fuel I cant smell it or think straight and taken gallon after gallon not being able to tell if its fuel or water. I also agree that 57% humidity doesn't seem particularly high - its not south east Asian jungle levels - but I'm not an expert at humidity, 32Deg c at 57% humidity at 02:30 am is not going to be comfortable for me though. I looked at recent weather in DEL, and those values were at the higher end of the range.
Further, I believe the prevailing weather conditions on the ground are less important when it comes to the volume of water getting in. Fuel is cold, or gets damn cold during a 9 Hr flight. Fuel Temperature Management is an issue for our Drivers. So as the fuel is used at altitude, Air enters the tank through NACA Ducts in the outboard end of the wing. Its beneficial to maintain a slight positive pressure, amongst other things to reduce evaporation. (Added complication, there is also the Nitrogen Enrichment system due to TWA800 - but that's more about processing the air in the tank to change the properties and make it non-explosive). Then as the aircraft descends, more air enters as the air pressure increases. Its the humidity of that air in the descent that is going to determine the volume of water entering the tank and potentially the fuel. The water in the air condenses on the sides of the tank because of the cold post-flight fuel. It doesn't dissolve into the fuel, but sinks to the bottom. Ground temperature / humidity and time will likely affect how much water condenses out of that air while on the ground. There won't be a huge amount of air exchange on the ground. Likely if the AC landed at 2am, then from sunrise as the tank warmed up, there would actually be a flow out of the vents.

What Features and procedures are there to mitigate Water? I apologise if my post gave the impression that there are no mitigation processes. There are. Water is well understood in the industry.
Well for a start, Features / Design. The Aircraft has a water scavenge system. Water doesn't mix with fuel, it sinks to the bottom being about 20% denser than fuel, so at the very lowest point in the tank, the water scavenge system (Powered by the Aft Fuel Pump through a jet pump, a venturi like system) will suck up the 'fluid' at the very lowest point, where the water would collect and in Boeings words 'drip' that fluid into the path of the pump pickup inlet (but I'd describe it more as a 'squirt'). The idea being that a small amount of water injected into the fuel will be consumed by the engines harmlessly.
There is also agitation. The wing tank pumps are pretty much running constantly, from before engine startup to after engine shutdown. The pumps are quite violent to the fuel and supply more pressure then the engine could ever need. Any excess pressure is dumped right back into the tank, quite close to the pump, in a direction that would further stir up the fuel and help break up any water into suspended droplets.
This all works if there is a small amount of water in the fuel. The water scavenge pickup is right next to the pump inlet, but a bit lower. Little bits of water get managed. Looking at the pictures of the system, I'd say a couple of gallons of water would do no harm at all.
But if there was significantly more water in that tank. Guessing 10-30 + gallons, then the pump would be circulating water, or highly water rich fuel.

Then there's the suction pickup. Its in the same 'bay' as the aft fuel pump and located a little 'higher' than the pump inlet and water scavenge inlet. But also located between stringers that can separate out the settled water ( I wish I could share the pictures, but more than my job is worth ) I can imagine the suction pickup being in a pool of 'stagnant' water.

I also saw a post from Metcha about the scavenge system blocking with Algae - I don't know about that (B787 not my fleet). But possible that could aggravate things. There's also the reports of the Indian AAIB looking at the Titan Biocide incident. Its possible that might be related and could modify the theory.

Procedures - There's the (at my airline weekly I think) procedure to 'sump' the tanks. There are drain points in the tank. Valves that you can push in with a tool and fluid drains. As described earlier (and videos exist on YouTube), you drain about a gallon of fluid and examine it for water. Most often in temperate climates (my experience), there's a few 'beads' of water in the bottom of the jug, moving about like mercury. Except when there's more. Sometimes there's a clear line in the jug, half water, fuel above. And sometimes a gallon of water, that smells like fuel. You drain it until you are sure there's no water.

Could 'that much' water have condensed in the tank? Well - There's the question. I guess the basis of the theory is that on descent into DEL, the wing tanks picked up some very humid air, which settled water into the tanks through the night. Then, as the theory I posited must work, the wing pumps must have circulated and suspended that water into the fuel.
By design, the water from the CDG-DEL arrival should have been consumed in the DEL-AMD Sector. But desperately clinging to defending my theory (I appreciate this is a hole), lets assume that at DEL the pumps were running for a long time. Lets assume that the pumps allowed the water to be dispersed within the tank prior to being used through the engines. Then - in the DEL-AMD sector, the wing tanks could have picked up more water.

How much water would cause a sustained flameout? I never posited a sustained flameout. I posited a significant reduction in thrust. Listening back to the rooftop video, which at first we were all listening for evidence of RAT, there's also a rhythmic pop-pop-pop of engines struggling. I think the engines were running, albeit badly. Heavily water contaminated fuel will do that. It doesn't have to be 100% water. Just enough water to make the engine lose thrust. Your 2 gallons per second figure assumes the engine running at full flow. I'm not a figures man, I'll not challenge that, I do recall flowmeters at max thrust spin like crazy. But an engine struggling due to a high perrcentage of contamination, is that using 2 gal/sec? or just trying to? What happens if there is e.g. 20% water in the fuel?

There are also reported incidents of engine flameout / thrust reduction that have all happened at altitude. Incidents that have been recovered due to the altitude and time available. I Posited that the engines would have eventually regained full thrust once the contamination worked though. But 30 seconds of rough engine is very different at 40,000 feet than it is at 100 feet.

The theory also relies on a second part - the electrical failure. That the electrical failure causes the fuel supply to switch, a few seconds after the failure. We go, at the point of electrical failure from a pumped centre tank supply to a sucked wing tank supply. It takes time for that different fuel to reach the engine.

Ive written enough and am tired. Must stop now.

Last edited by Senior Pilot; 30th Jun 2025 at 23:01 . Reason: Quote from a week ago; this is not a Hamsterwheel thread, thanks!
TURIN
2025-06-30T22:49:00
permalink
Post: 11913931
Grounded Spanner
There's an awful lot of ifs and buts in that opus.
A water spillage from a galley or lavatory would have to be huge to cause the type of total electrical failure you describe. The Power Electrics panels are yards apart, for both main systems to fail simultaneously due to water ingress would take gallons and gallons of water. Sorry but I don't buy it!

Do they still use Bowsers in India? I thought most airports used underground pipes feeding pots on the stands.

Re: settled fuel. As soon as the boost pumps are running, fuel is being recirculated. When we do water drain checks we have to leave the aircraft for a good hour after any refuelling, boost pump operation or aircraft movement before taking the samples. Otherwise any water will remain suspended in the fuel.
Generally speaking flight deck preparation that I have witnessed will have the boost pumps on many many minutes before take off. This will agitate the fuel and any contamination sufficiently to render your theory moot .
I'm also not quite sure how the aircraft could have got so much contaminated fuel on the previous sector and it not be scavenged out during that flight.

1 user liked this post.

Gupeg
2025-07-01T03:07:00
permalink
Post: 11913998
787 Fuel System

Originally Posted by Sailvi767
Both engines run from the center tank on takeoff if it has fuel in the tank which was the case on this flight.
It would be good to get an FCOM reference for this, and/or definitive answer from a current 787 pilot (if they know ).

On the A320 if the centre fuel pumps are selected on pre-start, they run for 2 mins after start and then turn themselves off until Flaps selected to 0 (i.e. well after takeoff), when they turn themselves on. As far as the crew are concerned they were selected on from pre-start onwards [long retired A320 so forgive me if in error].

If certification demands this 'complexity' it would seem surprising the 787 does not have a similar system? Are we sure the 787 centre tank 'higher pressure' pumps are:
  1. Actually running on takeoff?
  2. If running, they are providing centre tank fuel directly to both engines, and not, say, centre tank fuel to wing tanks, and then wing tanks to engines?

3 users liked this post.

megan
2025-07-01T03:50:00
permalink
Post: 11914009
Both engines run from the center tank on takeoff if it has fuel in the tank which was the case on this flight
I'm afraid not, take off and landing are considered high risk as far as fuel supply is concerned and the following FAR is relevant,

\xa7 25.953 Fuel system independence.

Each fuel system must meet the requirements of \xa7 25.903(b) ( (b) Engine isolation. The powerplants must be arranged and isolated from each other to allow operation, in at least one configuration, so that the failure or malfunction of any engine, or of any system that can affect the engine, will not— (1) Prevent the continued safe operation of the remaining engines; or

(2) Require immediate action by any crewmember for continued safe operation )

by—

(a) Allowing the supply of fuel to each engine through a system independent of each part of the system supplying fuel to any other engine; or

(b) Any other acceptable method

That is, during these periods each engine must be supplied with fuel from a separate tank, you don't want all engines being supplied by the same tank and run the risk of losing all engines due to contamination in that one tank.

Switch over to the centre tank to feed all engines typically takes place at 10,000'



1 user liked this post.