Page Links: First Previous 1 2 3 4 5 Last Index Page
FullWings
2025-06-20T09:43:00 permalink Post: 11906781 |
Although it seems inconceivable that they did not firewall the thrust levers, it will be interesting to know if and when this happened. The aircraft clearly did not have enough thrust for the flight regime with the gear extended etc. But does this imply a total loss of thrust on both engines?
I would be very surprised if the thrust levers were not firewalled early on, in fact with such determination that they went through the instrument panel! On a wider observation, professional commercial pilots like the Air India ones in this accident go through regular simulator training according their own SOPs, which when dealing with things like thrust loss during or after the takeoff roll are likely pretty similar or even identical to the manufacturer\x92s guidelines; if they did differ it would be because they were more conservative in application. Boeing standard is to do nothing until 200\x92AGL other than control the aircraft in yaw, pitch and roll. Above 400\x92AGL you can start doing some drills, if applicable. This assumes, of course, that you can get to these heights in the first place. I would put forward that in this accident, the crew immediately found themselves in what Boeing call \x93Special situations\x94 or \x93Situations beyond the scope of normal procedures\x94. We don\x92t know yet whether there was a thrust loss or total failure at the outset; we don\x92t know if the RAT deployed due to sensed failures or control operation. As a trainer, the captain would have known the implications of actioning the dual engine failure memory items, especially near the ground, but if you\x92ve tried everything else and are still going down then what is there to lose? This is not to suggest this is what happened, just to fill in the blanks in terms of possibilities. Whatever did occur likely put them outside the realm of SOPs in short order, which is a difficult situation at the best of times, especially as for your whole flying career you have been trained and assessed at your ability to conform to those SOPs as accurately as possible in the takeoff phase. 9 users liked this post. |
Someone Somewhere
2025-06-20T09:48:00 permalink Post: 11906783 |
On that point, the gear, as far as I can establish (not openly published according to Google), weighs around 8-odd to 10 tonnes. Typically, retracts in about 10 seconds. I estimate it's no more than a 2 metre lift. As far as I can work out (using 3m to make the value higher), that requires about 30kW (rough estimate, budgetary figure, not accounting for it being a curved path, so it's probably higher closer to fully up), but whether wind pressure affects it, I have no idea. Anyway, 30kW isn't a huge (additional) load on a 225kVA alternator. Less than I'd imagined.
Now I'm wondering how big (power ratings) the hydraulic pump and motor are? No doubt, they're driven by a VSD. Can anyone comment, please? 37GPM at 4750PSI is ~76kW before considering pump, motor, and converter losses. Ouch. Very surprised they kept the demand pumps for left/right systems the same size given they only do flight control and perhaps reverser loads - and reverser operation off an EMP is presumably rare as it implies the EDP failed (or was MELed) without the corresponding engine. 777 centre EMPs were apparently only 6GPM 3000PSI with gear/flaps using the air-driven demand pumps. (we may be re-approaching 'hamster wheel' territory) 1 user liked this post. |
TURIN
2025-06-20T10:26:00 permalink Post: 11906808 |
... the gear, as far as I can establish (not openly published according to Google), weighs around 8-odd to 10 tonnes. Typically, retracts in about 10 seconds. I estimate it's no more than a 2 metre lift. As far as I can work out (using 3m to make the value higher), that requires about 30kW (rough estimate, budgetary figure, not accounting for it being a curved path, so it's probably higher closer to fully up), but whether wind pressure affects it, I have no idea. Anyway, 30kW isn't a huge (additional) load on a 225kVA alternator. Less than I'd imagined.
Now I'm wondering how big (power ratings) the hydraulic pump and motor are? No doubt, they're driven by a VSD. Can anyone comment, please? As for hydraulic pumps, they are limited to how much flow they can produce. The pressure drops significantly during large control movements and the landing gear actuators in particular need a large flow to keep them moving. When all pumps are operating, engine driven or otherwise that pressure drop is limited, when down to just one small RAT driven pump there's only so much it can do and the design ensures that control of the aircraft can be maintained on just RAT power. There won't be enough power from the RAT generator to power emergency aircraft systems and large hydraulic pumps. This is why it has its own small hydraulic pump. |
lighttwin2
2025-06-21T15:46:00 permalink Post: 11907858 |
TCMA continues to be one of the few (very unlikely) causes of/contributors to simultaneous shutdown of both engines. So far, though, I don't think we've seen a credible scenario explaining the possibility that TCMA was triggered in this accident. I'm not sure I understand your speculation.
In the scenario you are considering, it's clear that the air/ground state would be wrongly "understood" by the TCMA function. But we don't have, AFAIK , a credible theory for how that might happen. Surely it would have to result from either incorrect signals from the relevant sensors or a failure of the related logic in the FADEC TCMA function, or a combination of those. Indeed, I don't think we yet know exactly which sensor readings that logic depends on or how those readings are fed to the FADEC. Does your speculation include any thoughts about this? Also, the FADEC TCMA function has to "believe" that the engine is operating at high power and not responding to thrust lever operation. In your proposed scenario, is this also a logic failure — in both FADECs? Or false inputs from both TLs? Or are both engines actually operating at higher than commanded power levels? Or do I misunderstand your post?
Q: Would the a/c have enough kinetic energy a 184kts to climb to 100-150ft agl and then reach its final position if the engines had failed at, or just, before rotation? A: Theoretically possible - see calculation here . NB, the a/c actually flew 1.5km from the end of the runway and 2.3km from the likely point of rotation. Q: Doesn't the forward position of the gear mean that power failed after the pilots had selected gear up? A: Inconclusive - had hydraulic power had been lost prior to rotation, the gear could also be in this position - explanation here Q: If the throttle levers were brought to idle during take-off, would the A/C have applied autobrake, reversers and speedbrake? A: Yes, although there is a built in delay before reverser and speedbrake actually deploy - see here . Q: Is the ADS-B data consistent with this scenario? A: Yes, e.g. the Flightradar data shows the aircraft decelerating rapidly (12 knots in 4.2 seconds) from close to rotation. However, it's not clear how accurate this data is. For one, the altitude data is +/- 25 feet, second, while I was under the impression FR would have received airspeed data from the a/c sensors, this post suggests maybe not. Q: Does TCMA activation require the thrust levers to be at idle or does it function when the thrust levels are above idle, but where the actual thrust is above that commanded? A: No, the latter is true (i.e. idle is not required) - confirmed here - there are of course many protections against false activation Q. Did AI171 have the same software version / logic paths as NH-985 A. Unknown. That a/c had Trent 1000s so to some extent the software is different, but we understand the TCMA logic is broadly the same regardless of engine. I have not seen a post clarifying whether the TCMA software has been updated /changed via SB since 2019 to account for this incident. Be grateful if posters could refrain from speculative responses "e.g. I think this is unlikely because I feel x". I am not opining on how likely this sequence of events is, simply trying to summarise whether or not this theory has been ruled in or out. I also recommend this post for a summary to read before posting. . Last edited by lighttwin2; 21st Jun 2025 at 16:13 . |
ignorantAndroid
2025-06-21T18:02:00 permalink Post: 11907949 |
Another post referenced the RAT only supplying electrical power after 10s - I find that hard to believe, not instant obviously because there has to be some stabilisation time and startup/boot time but it would imply the LH flight instruments would only be active very late. Hopefully the RAT hydraulics would be effective quicker than that.
The engine-driven hydraulic pumps should still work for at least a few seconds after flameout. There's also a small amount of stored energy in the hydraulic systems even after the pumps stop. So even with that 6-second delay for the RAT, there shouldn't be any significant interruption in hydraulic power for the primary flight controls. 6 users liked this post. |
TURIN
2025-07-01T08:49:00 permalink Post: 11914118 |
In my experience the APU supplies enough power to run all systems. Hydraulic pumps, fuel pumps etc |
Sailvi767
2025-07-01T12:39:00 permalink Post: 11914246 |
On the 767, 757 and A330 anytime you are in single generator operations the aircraft is load shedding. The 787 with a totally different electrical system might function differently.
|