Page Links: First Previous 9 10 11 12 13 14 15 16 17 18 19 Last Index Page
nachtmusak
2025-07-01T12:06:00 permalink Post: 11914222 |
This is my latest attempt to square the circle using all the data points and minimal assumptions. The main shortcoming of the analysis is not knowing the maximum L/D and the speed for maximum LD with the gear down, flaps 5, and the RAT extended. However, if I use a reasonable number in my opinion for the L/D in that configuration and assume that the airplane is being flown at the speed for it, it will not get to the crash site. The distance from the runway of the crash site is from a previous graphic (1.55 km); the rotation point from fdr, permalink 314; 200 feet max height above the runway being generally accepted; crash site 50 feet below the runway elevation cited previously. An average speed of 180 knots is consistent with the dimensions given and 30 seconds flight time. A flare at 50 feet will briefly increase the L/D to 20, maybe even 30 (500 feet more than shown) but still not enough to make up the shortfall, In fact, with a head wind the L/D will be lower than assumed as well as if the speed being flown is higher or lower than required for maximum L/D in that configuration. In other words, there must have been some thrust available.
![]() As the aircraft visibly continues to climb past that height (and for a longer period than ADS-B data covers, if the camera's perspective casts doubt on that), it seems rather clear to me that it reached its peak height past the end of the runway. In light of this I find the fact that people keep calculating a glide from the runway to the crash site to be a bit strange. Wouldn't the first step of any math be to try to determine where it started descending? |
Page Links: First Previous 9 10 11 12 13 14 15 16 17 18 19 Last Index Page