Page Links: First Previous 1 2 3 4 5 6 7 8 9 10 11 12 Next Last Index Page
Aerospace101
2025-06-14T07:51:00 permalink Post: 11901217 |
How is misselected flap still being discussed? Misselected flap does not cause gear retraction to cease nor cause the RAT to deploy. Both of which are (subjectively) evidenced in the videos. What is the supporting evidence for misselected flap?
Taken together, it seems that there was an event (or events) shortly after rotation that compromised both engines and the electrical system. There is no evidence yet of birdstrikes and continued engine operation *should* not be affected by the aircraft electrical system as they are independently/internally powered, so logic would have the engines failing first leading to a cascade of other problems. Something that affects all engines pretty much simultaneously is a rare beast but it has happened in the past; outside of a deliberate selection of the fuel and/or fire switches for both power plants there is fuel contamination, FOD and not much else.
they\x92ve gone TO power all the way to rotate, no power issues, no eng fuel issues, but as soon as its wheels off they lose all power. That can\x92t be coincidental. TCMA certainly fits this scenario especially with ground/air logic. 1 user liked this post. |
Ninefornow
2025-06-14T09:23:00 permalink Post: 11901300 |
Double power loss causality
A summary of the more certain things we know about the accident so far:
The takeoff run was from the full length and appeared normal, even after comparing with the same flight on previous days. This very much reduces the likelihood of it being a performance issue, e.g. wrong flaps, derate, ZFW/TOW, etc. Shortly after takeoff, the gear started retracting but stopped in an early intermediate position. At the same time the aircraft climb rate dropped off, then it started a shallow descent. This is consistent with a loss of electrical power causing a loss of hydraulic pressure and total engine thrust from both engines reducing below that generated by one engine at the takeoff setting. The position reporting also went offline at that moment, indicating that it was likely load shed due to an electrical malfunction . I personally think this is a good summary of what we can ascertain at this point from the evidence we have. I am not a 787 driver by any means but with a fair bit of aviation experience. I would be interested in any thoughts on this suggestion regarding loss of thrust: If we take it as a reasonable assumption as above that it is almost simultaneous loss of significant thrust, and for the good reasons already discussed, it is pretty unlikely that from what we can see/analyse, that the cause of this would be bird strike (expect to see some signs on video if it's significant enough to cause double engine failure) nor fuel contamination (reasons as above re: likelihood, other ac affected and simultaneous nature). TCMA I don't know enough about but it seems that the sensor redundancy/logic protection is so high it would not be the sole cause. On this basis, should we perhaps consider the causality of a total electrics failure of some kind first, leading to deployment of the RAT, gear retraction cease etc. Clearly the independent FADEC power generation systems would mean this doesn't on its own prevent thrust control of the engines but could we then be looking at cascading faults (possibly exacerbated by latent faults below the MEL/defect threshold) that contribute to dual power loss and sensor/system issues in throttle response not resulting in FADEC commands to the engines to increase thrust. So even at that point 'firewalling' the throttles could tragically not recover the situation? Very happy to be corrected by those with much more experience and understanding of big jets operations and systems! |
Alty7x7
2025-06-14T13:40:00 permalink Post: 11901495 |
Fuel cutoff switches
My next question, again I believe not discussed, is what do the 787 Fuel Cutoff switches actually do? Obviously, they cut off the fuel supplies to the engines - pretty important in engine fire and other scenarios, but goes without saying. The real question is, what do they activate (or deactivate)? I'm assuming a simple solenoid valve, which is open when powered and closed when unpowered, but of course, there will (certainly) be Electro-Mechanical or Solid-State (Electronic) relays between the switches and the (solenoid valves).
I guess the next obvious question is, is there anything else that can turn off those Fuel Cutoff Valves - a computer condition for example. I'm assuming not, but I think it needs to be considered. Taking each switch individually, next, since this is part of an electrical circuit, and of necessity must include Electrical Relays, there is certainly at least one and in all probability two electric Power Sources involved in this circuit. One supply which passes through the switch to activate the relay, and, I'm assuming, a second, higher current and probably higher voltage supply which drives the (solenoid?) valve. As I see it, interrupting either supply will have the same effect - if the system is wired in the Positive-Postive sense, meaning a current through the switch causes the relay to pass a current through the (solenoid). If either of these supplies is cut, the Fuel Shutoffs will shut off the fuel. So, the question is, where do these supplies come from, and under what circumstances could they be cut off? Sure, it looks to some (myself included) like a near simultaneous cutoff of both engines, but that doesn't have to have been caused by either of the pilots. I know there is huge redundancy built into the 787 Electrical Systems, but some of the evidence is suggesting that there was something not right with the plane's electrical system. I'm also fairly sure that there will be parts and places where certain faults can take the system down, despite the redundancy. I can't say where, but it's very difficult to design a perfect system, especially where there has to be transfers between multiple potential supplies and single actuators, motors or valves. Having spent years repairing electrical and electronic systems, I know that the most difficult of all electrical faults are the intermittent ones. And I suspect that this is at the root of this crash. An intermittent or faulty AOA sensor has "caused" (provoked) multiple famous crashes... Can't find the one I'm looking for (pre-1980, I think) as the Max AOA issues dominate. I can cite a very personal example, which involved the electrical supply to my house. I had several computers running 24x365 so of course, ran them off a UPS, which turned out to be a very good thing. I started to notice that at certain times, the UPS would activate - it would cut in and take over the computer loads, its alarm would go off to indicate a power fault. But the power was still on! This carried on for weeks and I initially blamed the UPS. Then, I noticed that it only happened on very hot afternoons... Long story short, the fault was caused by an electrical linesman, probably 30 years earlier, failing to tighten up a joint clamp on the phase wire to our house, across the street. Heating caused expansion then movement, and the power would momentarily go off then back on, and the UPS detected this. I note that this crash was on a hot day, and maybe this plane (which I believe was repositioned for the flight), had not been operating in such high temperatures recently, meaning the problem went unnoticed. 2 users liked this post. |
Wannabe Flyer
2025-06-14T13:43:00 permalink Post: 11901499 |
Reports coming in that Indian regulator has sent out a note for inspection of all GenX engines on the 787
|
lighttwin2
2025-06-14T18:04:00 permalink Post: 11901699 |
There are a few comments along the lines of "it is incredibly unlikely that..." this is selection bias in reverse. Something incredibly unlikely
has
happened, and it's contained in this sample set.
To summarise some known facts about the TCMA system: 1) TCMA will shut down an engine if:
3) Since then the TCMA should have been updated/fixed (and indeed the software will have been updated by SB since the a/c was delivered, to detect a wider range of runaway conditions) And speculation: 4) It may be possible - given the close timings - that a TCMA activation occurred as the a/c was leaving the ground, with kinetic energy and spool down time getting the a/c from the ground to its peak height In the recent BA LGW incident the PF reduced thrust to idle at V1, then added thrust back, then committed to a RTO. I wonder if something similar could have occurred:
6 users liked this post. |
SpaceQuality
2025-06-14T20:42:00 permalink Post: 11901816 |
Boeing TCMA Patent US6704630B2
Also a newcomer here, but an experienced private pilot, Software Engineer with a degree in Aerospace Computer Science and former Head of Quality for Satellites and Interplanetary Missions. We have already seen bad software solutions and the results thereof in the 737 MAX accidents, which makes me wonder, if the TCMA can reach a state, where unintended engine shutdown is possible.
There is one system implemented in the 787, that has the authority to shut down the engines, based on software subsystem decision. Interestingly - according to the description in the patent below - the same TCMA software package determines the shutdown decision, in both redundant subsystems. Excerpt from the Patent: "Malfunctions in aircraft power plant thrust control systems can result in uncontrollable high engine power levels that are potentially hazardous or catastrophic for aircraft operation. A particularly hazardous situation is when a thrust control system failure results in one of the aircraft's engines continuing to operate at a high power condition and not responding to a throttle command to reduce power during takeoff, approach or landing. Typically, when this failure mode occurs, the actual thrust either increases to a significantly higher than commanded thrust and/or remains at a high level when the thrust levers are set for low thrust.... In one preferred embodiment the present invention is directed to a system and method for detecting and correcting a thrust control malfunction in an aircraft engine. The system includes an electronic engine control (EEC) unit that includes a first processing subsystem and a second processing subsystem, and a thrust control malfunction accommodation (TCMA) circuit included in the first processing subsystem and the second processing subsystem. Additionally, the system includes a TCMA software package executed by the first processing subsystem and the second processing subsystem, thereby providing redundant execution of the TCMA software package. The method of the present invention compares the engine's actual power level with a threshold contour defined by the TCMA software package. When the TCMA software package determines that a thrust control malfunction has occurred, based on the engine's power level exceeding the threshold contour, the engine is shut down by the TCMA circuit. The present invention is still further directed to an electronic engine control (EEC) unit configured to detect and correct an aircraft engine thrust control malfunction using an active-active functionality. The EEC includes a first processing subsystem for unilaterally monitoring engine operation and shutting down the engine when a thrust control malfunction occurs, and a second processing subsystem for unilaterally monitoring engine operation and shutting down the engine when a thrust control malfunction occurs." Just my 20 cents 12 users liked this post. |
tdracer
2025-06-14T20:48:00 permalink Post: 11901821 |
Another hour spent sifting through the stuff since last night (my sympathies to the mods
![]() "Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight. Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring). As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level. Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC). The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight. Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident: 1) TCMA activation shutdown the engines or 2) The fuel cutoff switches were activated. I literally can come up with no other plausible scenarios. In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive. 67 users liked this post. |
BugBear
2025-06-14T21:19:00 permalink Post: 11901847 |
Which side of V1
Also a newcomer here, but an experienced private pilot, Software Engineer with a degree in Aerospace Computer Science and former Head of Quality for Satellites and Interplanetary Missions. We have already seen bad software solutions and the results thereof in the 737 MAX accidents, which makes me wonder, if the TCMA can reach a state, where unintended engine shutdown is possible.
There is one system implemented in the 787, that has the authority to shut down the engines, based on software subsystem decision. Interestingly - according to the description in the patent below - the same TCMA software package determines the shutdown decision, in both redundant subsystems. Excerpt from the Patent: "Malfunctions in aircraft power plant thrust control systems can result in uncontrollable high engine power levels that are potentially hazardous or catastrophic for aircraft operation. A particularly hazardous situation is when a thrust control system failure results in one of the aircraft's engines continuing to operate at a high power condition and not responding to a throttle command to reduce power during takeoff, approach or landing. Typically, when this failure mode occurs, the actual thrust either increases to a significantly higher than commanded thrust and/or remains at a high level when the thrust levers are set for low thrust.... In one preferred embodiment the present invention is directed to a system and method for detecting and correcting a thrust control malfunction in an aircraft engine. The system includes an electronic engine control (EEC) unit that includes a first processing subsystem and a second processing subsystem, and a thrust control malfunction accommodation (TCMA) circuit included in the first processing subsystem and the second processing subsystem. Additionally, the system includes a TCMA software package executed by the first processing subsystem and the second processing subsystem, thereby providing redundant execution of the TCMA software package. The method of the present invention compares the engine's actual power level with a threshold contour defined by the TCMA software package. When the TCMA software package determines that a thrust control malfunction has occurred, based on the engine's power level exceeding the threshold contour, the engine is shut down by the TCMA circuit. The present invention is still further directed to an electronic engine control (EEC) unit configured to detect and correct an aircraft engine thrust control malfunction using an active-active functionality. The EEC includes a first processing subsystem for unilaterally monitoring engine operation and shutting down the engine when a thrust control malfunction occurs, and a second processing subsystem for unilaterally monitoring engine operation and shutting down the engine when a thrust control malfunction occurs." Just my 20 cents 1 user liked this post. |
DaveReidUK
2025-06-14T21:27:00 permalink Post: 11901855 |
Another hour spent sifting through the stuff since last night (my sympathies to the mods
![]() "Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight. Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring). As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level. Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC). The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight. Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident: 1) TCMA activation shutdown the engines or 2) The fuel cutoff switches were activated. I literally can come up with no other plausible scenarios. In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive. 5 users liked this post. |
BugBear
2025-06-14T21:31:00 permalink Post: 11901857 |
TCMA
TCMA
Which side of V1 does TCMA lurk? If a pilot closes the throttles to abort, does the system allow it? After all, "too low thrust" is outside the contour.... Ya know, when every conceivable possibility (or close) has been de wormed, it"s usually something impossible, or too fearful...(Or dishonest, fraudulent, criminal ....etc ,? To include unnecessary, venal, and inappropriate) Sledgehammer, flyswatter.... MCAS Last edited by BugBear; 14th Jun 2025 at 21:41 . |
SpaceQuality
2025-06-14T21:33:00 permalink Post: 11901860 |
TCMA
The patent says TCMA will only activate, if "the aircraft is on a ground surface", no speed mentioned.
|
Capi_Cafre'
2025-06-14T21:36:00 permalink Post: 11901861 |
2 users liked this post. |
lighttwin2
2025-06-14T21:38:00 permalink Post: 11901864 |
I posited a potential TCMA sequence in a post timed 1804Z - speculative of course. Agree with others, it is difficult to contemplate and seems staggeringly unlikely. 1 user liked this post. |
Mr Optimistic
2025-06-14T21:39:00 permalink Post: 11901865 |
TCMA
Which side of V1 does TCMA lurk? If a pilot closes the throttles to abort, does the system allow it? After all, "too low thrust" is outside the contour.... Ya know, when every conceivable possibility (or close) has been de wormed, it"s usually something impossible, or too fearful...(Or dishonest, fraudulent, criminal ....etc ,? However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. 2 users liked this post. |
maxter
2025-06-14T21:51:00 permalink Post: 11901871 |
Neither does the other point bare thinking about. Massive and tragic either way. So sad that when there is a 'failure' somehow in the system, the cost 'failure' is too often so high. May we never forget those who pay the ultimate price of these failures.
|
BugBear
2025-06-14T21:59:00 permalink Post: 11901875 |
From tdracer
However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. |
Alty7x7
2025-06-14T22:00:00 permalink Post: 11901877 |
TCMA
TCMA
Which side of V1 does TCMA lurk? If a pilot closes the throttles to abort, does the system allow it? After all, "too low thrust" is outside the contour.... Ya know, when every conceivable possibility (or close) has been de wormed, it"s usually something impossible, or too fearful...(Or dishonest, fraudulent, criminal ....etc ,? To include unnecessary, venal, and inappropriate) Sledgehammer, flyswatter.... MCAS |
Compton3fox
2025-06-14T22:13:00 permalink Post: 11901888 |
From tdracer
However, TCMA is only active on the ground (unfamiliar with the 787/GEnx TCMA air/ground logic - on the 747-8 we used 5 sources of air/ground - three Radio Altimeters and two Weight on Wheels - at least one of each had to indicate ground to enable TCMA). TCMA will shutdown the engine via the N2 overspeed protection - nearly instantaneous. For this to be TCMA, it would require at least two major failures - improper air ground indication or logic, and improper TCMA activation logic (completely separate software paths in the FADEC). Like I said, very, very unlikely. 1 user liked this post. |
BrogulT
2025-06-14T22:17:00 permalink Post: 11901893 |
Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident:
1) TCMA activation shutdown the engines or 2) The fuel cutoff switches were activated. I literally can come up with no other plausible scenarios |
FullWings
2025-06-14T22:21:00 permalink Post: 11901900 |
I think it needs to be said again that pretty much anything can happen to the aircraft systems and the engines will carry on running - this is by design as they have independent FADEC and power supplies and at sea level fuel will get through without boost pumps. You could almost saw the wing off the fuselage and the engine would still produce thrust, TCMA notwithstanding.
We don\x92t know yet what actually triggered the RAT from the relatively short list but every item on it means there is a serious/critical failure(s). The flight path suggests that it was a double engine failure or shutdown (commanded or uncommanded) as anything else should have left the aeroplane in a poor state but able to climb away. 6 users liked this post. |
Page Links: First Previous 1 2 3 4 5 6 7 8 9 10 11 12 Next Last Index Page