Posts about: "TCMA (Logic)" [Posts: 25 Pages: 2]

tdracer
2025-06-13T22:41:00
permalink
Post: 11900973
Since TCMA keeps getting discussed, let me add a bit more of what I know:

There were two on-ground events - as noted one each Rolls and GE. My understanding is that both events involved rapid thrust lever movements into/out-of reverse selection (i.e. reverse - forward - reverse in rapid succession). This rapid thrust lever movement - combined with the engine trying it's best to react to those movements - tricked the TCMA logic into thinking the engine was accelerating uncontrollably. There are two key points here - on-ground, and rapid thrust lever movements. There is absolutely no reason why the thrust levers should be moving at all during this event, and it doesn't appear to have occurred while the aircraft was still on the ground.

I was in this business long enough to know that you 'never say never', it would take a pretty gross error in the TCMA logic for it to have activated without a large thrust lever movement.

9 users liked this post.

tdracer
2025-06-14T20:48:00
permalink
Post: 11901821
Another hour spent sifting through the stuff since last night (my sympathies to the mods ). A few more comments:

"Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight.

Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring).

As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level.

Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC).

The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight.

Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident:
1) TCMA activation shutdown the engines
or
2) The fuel cutoff switches were activated.
I literally can come up with no other plausible scenarios.

In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive.

67 users liked this post.

DaveReidUK
2025-06-14T21:27:00
permalink
Post: 11901855
Originally Posted by tdracer
Another hour spent sifting through the stuff since last night (my sympathies to the mods ). A few more comments:

"Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight.

Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring).

As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level.

Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC).

The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight.

Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident:
1) TCMA activation shutdown the engines
or
2) The fuel cutoff switches were activated.
I literally can come up with no other plausible scenarios.

In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive.
A TCMA bug just doesn't bear thinking about, I really hope that doesn't turn out to be the case.

5 users liked this post.

fdr
2025-06-14T23:20:00
permalink
Post: 11901949
Originally Posted by tdracer

... The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight.

Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident:
1) TCMA activation shutdown the engines
or
2) The fuel cutoff switches were activated.
I literally can come up with no other plausible scenarios.

In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) ...
TD, in this case, the RT call suggests we are a grand total of 1 choice, and that goes to a fair likelihood that a fleet wide grounding is in the offing. Adding system complexity dependent on sensor reliability has bitten us all in the past and will do again, and I have a bad feeling that is where we are at with this. The SSA guys will be working overtime, but this has had the hall marks of being a bad sensor/system event from the outset. Am laying bets that there will be a fleet wide grounding in the next 3-4 days, if not sooner. Inadvertent GA thrust after landing has occurred before, (had it on a B744 myself), and it is curious but straightforward to handle.

5 users liked this post.

clearedtocross
2025-06-15T17:32:00
permalink
Post: 11902653
2008, a Spanair MD-82 crashed in a similar way after liftoff in Madrid. Final report Spanair .Main cause: The pilots did not configure the airplane according to checklist and took of with zero flaps and slats. Contributing: previous maintance was disabling RAT heating (MEL if not flying into icing conditions) which somehow inhibited electrically the takeoff configuration warning. I am not implying in the least that such a thing happended to this Air India crash. I just mention it as a proof that some *minor* quirks can contribute to an accident (i.e. disturb FADEC, TCMA logic, you name it) . Modern aircraft software logic is even more complex than the wired logic of an MD-82. But still: all "IF so and so THEN so and so " code can produce weird results if the conditions are corrupted or delayed by data communication lags. And according to a witness, there were some electrical quirks on the previous flight and possibly some maintenance thereafter. Again not implying any wrongdoing.
tdracer
2025-06-16T06:21:00
permalink
Post: 11903132
Originally Posted by DTA
Where does the logic block that takes the WoW and other inputs to generate the singe air/ground indication live? Is it somewhere that would be affected by the aircraft power systems? Could a failure in the aircraft power cause a false ground indication to be sent to the FADECs?
Repeating myself (again), but ALL the TCMA logic is resident in the FADEC. It takes aircraft inputs of air/ground (again, not familiar with the specifics of the air/ground logic used on the 787/GEnx-1B, so don't ask), thrust lever position, and what the engine is actually doing (mainly N1) to determine if the engine is 'out of control'.
The thrust lever inputs are hardwired (resolvers connected to the thrust levers, powered by the FADEC), other aircraft communications on the 787 are on an ethernet based network. Default mode for the FADEC if aircraft inputs are lost or invalid is "Air", as that is generally considered to be the 'safe' choice.
But even assuming some aircraft fault caused the FADECs to falsely believe the aircraft was 'on-ground', it would still take a pretty major error in the TCMA logic for it to actually trigger and shutdown the engine (especially lacking an associated thrust lever movement to idle). Never say never, but we're getting pretty far out on the probability tree for all these things to happen.

15 users liked this post.

Europa01
2025-06-16T08:03:00
permalink
Post: 11903225
TCMA / FADEC

Originally Posted by tdracer
Repeating myself (again), but ALL the TCMA logic is resident in the FADEC. It takes aircraft inputs of air/ground (again, not familiar with the specifics of the air/ground logic used on the 787/GEnx-1B, so don't ask), thrust lever position, and what the engine is actually doing (mainly N1) to determine if the engine is 'out of control'.
The thrust lever inputs are hardwired (resolvers connected to the thrust levers, powered by the FADEC), other aircraft communications on the 787 are on an ethernet based network. Default mode for the FADEC if aircraft inputs are lost or invalid is "Air", as that is generally considered to be the 'safe' choice.
But even assuming some aircraft fault caused the FADECs to falsely believe the aircraft was 'on-ground', it would still take a pretty major error in the TCMA logic for it to actually trigger and shutdown the engine (especially lacking an associated thrust lever movement to idle). Never say never, but we're getting pretty far out on the probability tree for all these things to happen.
Yes. Thank you tdracer. All those postulating TCMA / FADEC faults please read and understand this clear explanation.

Then, ask yourselves which extraordinarily low probability bundle of previously unrevealed faults could spontaneously manifest themselves on both engines simultaneously.

Also ask yourselves why these faults manifested at that critical phase of flight and not during taxiing or take-off roll when some of the TCMA sensors would have been primed.

2 users liked this post.

lighttwin2
2025-06-16T08:51:00
permalink
Post: 11903270
Originally Posted by medod
If TCMA cut fuel flow while still on the runway the aircraft would have been decelerating from the moment it lifted off, which is not what the ADS-B data indicates. The kinetic energy in the rotating parts of the engine wouldn't add much speed to the aircraft as the engines run down with no more energy being added via fuel.
I was not aware that we have granular ADS-B data from the a/c itself showing airspeed post rotation (rather than speed interpolated from GPS). Apologies if I have missed it. If it does show acceleration after takeoff I tend to agree with you.

In no particular order, here are some more thoughts on TCMA having caught up on the thread:

If you cut the fuel from two big engines at take-off power, there must be some delay before n2 decays below the threshold for generation (below idle n2), the generators disconnect and RAT deploys. GEnx have relatively long spool up/down times as the fan is so large (and would be exposed to 170+kts of ram air). Perhaps someone has a view on how long this would be, but I imagine it could easily be 10s or more between fuel cut off and RAT deployment. On AI171 the RAT appears to be already deployed at the beginning of the bystander video. That starts c. 13s before impact and around 17s after rotation. This does not prove anything except that the supposed shut down must have happened very close to rotation and could have happened just before rotation while the a/c was on the ground.

As a thought experiment, imagine if ANA985 in 2019 had decided to go around. The a/c rotates and is ~50 ft above the runway, suddenly both engines spooling down, very little runway left to land on and no reverse thrust available. I am struck by how similar this scenario is to AI171. This theory would require there to have been unexpected thrust lever movement in the moments before rotation - but plausibly one pilot moving to reject, followed by an overrule or change of heart - or even a simple human error such as the recent BA incident at LGW - could achieve this. This is perhaps more likely that any sensor fault that you would expect to only impact a single engine given the redundancy of systems.

Tdracer writes that a key requirement of TCMA is to identify an engine runaway in the event of an RTO, in order to allow the a/c to stop on the runway. This will have been tested extensively - it is a big leap to imagine a false activation could be triggered. It did happen on ANA985 but through a very unusual set of inputs including application of reverse (albeit this latter point may not be relevant if TCMA logic does not distinguish between the reverser being deployed or not).

Incidentally there is an assumption the TCMA software version in place on the ANA flight had already been patched and fixed on AI171. That probably is the case but I am not sure it is a known fact.

In summary I remain baffled by this tragic accident. I have not yet read anything that explicitly rules out TCMA activation and it remains a possibility due to the vanishingly small number of factors that could shut down two engines at apparently the exact same moment when they have fully redundant systems. Fuel contamination, for example, has typically impacted each engine a few minutes (at least) apart. I am also cautious (as others have pointed out) of a form of confirmation bias about Boeing software systems with four-letter acronyms.

In my mind the cause could equally well be something completely different to anything suggested on this thread, that will only become clear with more evidence. All of the above also incorporates a number of theories, i.e. that there was an engine shutdown - that are not conclusively known.

Thank you to the mods for an excellent job.

3 users liked this post.

tdracer
2025-06-13T22:41:00
permalink
Post: 11903418
Since TCMA keeps getting discussed, let me add a bit more of what I know:

There were two on-ground events - as noted one each Rolls and GE. My understanding is that both events involved rapid thrust lever movements into/out-of reverse selection (i.e. reverse - forward - reverse in rapid succession). This rapid thrust lever movement - combined with the engine trying it's best to react to those movements - tricked the TCMA logic into thinking the engine was accelerating uncontrollably. There are two key points here - on-ground, and rapid thrust lever movements. There is absolutely no reason why the thrust levers should be moving at all during this event, and it doesn't appear to have occurred while the aircraft was still on the ground.

I was in this business long enough to know that you 'never say never', it would take a pretty gross error in the TCMA logic for it to have activated without a large thrust lever movement.
tdracer
2025-06-14T20:48:00
permalink
Post: 11903420
Another hour spent sifting through the stuff since last night (my sympathies to the mods ). A few more comments:

"Real time engine monitoring" is typically not 'real time' - it's recorded and sent in periodic bursts. Very unlikely anything was sent from the event aircraft on this flight.

Commanded engine cutoff - the aisle stand fuel switch sends electrical signals to the spar valve and the "High Pressure Shutoff Valve" (HPSOV) in the Fuel Metering Unit, commanding them to open/close using aircraft power. The HPSOV is solenoid controlled, and near instantaneous. The solenoid is of a 'locking' type that needs to be powered both ways (for obvious reasons, you wouldn't want a loss of electrical power to shut down the engine). The fire handle does the same thing, via different electrical paths (i.e. separate wiring).

As I've noted previously, a complete loss of aircraft electrical power would not cause the engines to flameout (or even lose meaningful thrust) during takeoff. In the takeoff altitude envelope, 'suction feed' (I think Airbus calls it 'gravity feed') is more than sufficient to supply the engine driven fuel pumps. It's only when you get up to ~20k ft. that suction feed can become an issue - and this event happened near sea level.

Not matter what's happening on the aircraft side - pushing the thrust levers to the forward stop will give you (at least) rated takeoff power since the only thing required from the aircraft is fuel and thrust lever position (and the thrust lever position resolver is powered by the FADEC).

The TCMA logic is designed and scrubbed so as to be quite robust - flight test data of the engine response to throttle slams is reviewed to insure there is adequate margin between the TCMA limits and the actual engine responses to prevent improper TCMA activation. Again, never say never, but a whole lot would have had to go wrong in the TCMA logic for it to have activated on this flight.

Now, if I assume the speculation that the RAT deployed is correct, I keep coming up with two potential scenarios that could explain what's known regarding this accident:
1) TCMA activation shutdown the engines
or
2) The fuel cutoff switches were activated.
I literally can come up with no other plausible scenarios.

In all due respect to all the pilots on this forum, I really hope it wasn't TCMA. It wouldn't be the first time a mandated 'safety system' has caused an accident (it wouldn't just be Boeing and GE - TCMA was forced by the FAA and EASA to prevent a scenario that had never caused a fatal accident) - and there would be a lot embarrassing questions for all involved. But I personally know many of the people who created, validated, and certified the GEnx-1B TCMA logic - and can't imagine what they would be going through if they missed something (coincidentally, one of them was at my birthday party last weekend and inevitably we ended up talking about what we used to do at Boeing (he's also retired)). Worse, similar TCMA logic is on the GEnx-2B (747-8) - which I was personally responsible for certifying - as well as the GE90-115B and the 737 MAX Leap engine - the consequences of that logic causing this accident would be massive.

7 users liked this post.

tdracer
2025-06-16T06:21:00
permalink
Post: 11903434
Originally Posted by DTA
Where does the logic block that takes the WoW and other inputs to generate the singe air/ground indication live? Is it somewhere that would be affected by the aircraft power systems? Could a failure in the aircraft power cause a false ground indication to be sent to the FADECs?
Repeating myself (again), but ALL the TCMA logic is resident in the FADEC. It takes aircraft inputs of air/ground (again, not familiar with the specifics of the air/ground logic used on the 787/GEnx-1B, so don't ask), thrust lever position, and what the engine is actually doing (mainly N1) to determine if the engine is 'out of control'.
The thrust lever inputs are hardwired (resolvers connected to the thrust levers, powered by the FADEC), other aircraft communications on the 787 are on an ethernet based network. Default mode for the FADEC if aircraft inputs are lost or invalid is "Air", as that is generally considered to be the 'safe' choice.
But even assuming some aircraft fault caused the FADECs to falsely believe the aircraft was 'on-ground', it would still take a pretty major error in the TCMA logic for it to actually trigger and shutdown the engine (especially lacking an associated thrust lever movement to idle). Never say never, but we're getting pretty far out on the probability tree for all these things to happen.
Europa01
2025-06-16T08:03:00
permalink
Post: 11903748
TCMA / FADEC

Originally Posted by tdracer
Repeating myself (again), but ALL the TCMA logic is resident in the FADEC. It takes aircraft inputs of air/ground (again, not familiar with the specifics of the air/ground logic used on the 787/GEnx-1B, so don't ask), thrust lever position, and what the engine is actually doing (mainly N1) to determine if the engine is 'out of control'.
The thrust lever inputs are hardwired (resolvers connected to the thrust levers, powered by the FADEC), other aircraft communications on the 787 are on an ethernet based network. Default mode for the FADEC if aircraft inputs are lost or invalid is "Air", as that is generally considered to be the 'safe' choice.
But even assuming some aircraft fault caused the FADECs to falsely believe the aircraft was 'on-ground', it would still take a pretty major error in the TCMA logic for it to actually trigger and shutdown the engine (especially lacking an associated thrust lever movement to idle). Never say never, but we're getting pretty far out on the probability tree for all these things to happen.
Yes. Thank you tdracer. All those postulating TCMA / FADEC faults please read and understand this clear explanation.

Then, ask yourselves which extraordinarily low probability bundle of previously unrevealed faults could spontaneously manifest themselves on both engines simultaneously.

Also ask yourselves why these faults manifested at that critical phase of flight and not during taxiing or take-off roll when some of the TCMA sensors would have been primed.

1 user liked this post.

Europa01
2025-06-16T08:03:00
permalink
Post: 11903688
TCMA / FADEC

Originally Posted by tdracer
Repeating myself (again), but ALL the TCMA logic is resident in the FADEC. It takes aircraft inputs of air/ground (again, not familiar with the specifics of the air/ground logic used on the 787/GEnx-1B, so don't ask), thrust lever position, and what the engine is actually doing (mainly N1) to determine if the engine is 'out of control'.
The thrust lever inputs are hardwired (resolvers connected to the thrust levers, powered by the FADEC), other aircraft communications on the 787 are on an ethernet based network. Default mode for the FADEC if aircraft inputs are lost or invalid is "Air", as that is generally considered to be the 'safe' choice.
But even assuming some aircraft fault caused the FADECs to falsely believe the aircraft was 'on-ground', it would still take a pretty major error in the TCMA logic for it to actually trigger and shutdown the engine (especially lacking an associated thrust lever movement to idle). Never say never, but we're getting pretty far out on the probability tree for all these things to happen.
Yes. Thank you tdracer. All those postulating TCMA / FADEC faults please read and understand this clear explanation.

Then, ask yourselves which extraordinarily low probability bundle of previously unrevealed faults could spontaneously manifest themselves on both engines simultaneously.

Also ask yourselves why these faults manifested at that critical phase of flight and not during taxiing or take-off roll when some of the TCMA sensors would have been primed.
lighttwin2
2025-06-16T08:51:00
permalink
Post: 11903752
Originally Posted by medod
If TCMA cut fuel flow while still on the runway the aircraft would have been decelerating from the moment it lifted off, which is not what the ADS-B data indicates. The kinetic energy in the rotating parts of the engine wouldn't add much speed to the aircraft as the engines run down with no more energy being added via fuel.
I was not aware that we have granular ADS-B data from the a/c itself showing airspeed post rotation (rather than speed interpolated from GPS). Apologies if I have missed it. If it does show acceleration after takeoff I tend to agree with you.

In no particular order, here are some more thoughts on TCMA having caught up on the thread:

If you cut the fuel from two big engines at take-off power, there must be some delay before n2 decays below the threshold for generation (below idle n2), the generators disconnect and RAT deploys. GEnx have relatively long spool up/down times as the fan is so large (and would be exposed to 170+kts of ram air). Perhaps someone has a view on how long this would be, but I imagine it could easily be 10s or more between fuel cut off and RAT deployment. On AI171 the RAT appears to be already deployed at the beginning of the bystander video. That starts c. 13s before impact and around 17s after rotation. This does not prove anything except that the supposed shut down must have happened very close to rotation and could have happened just before rotation while the a/c was on the ground.

As a thought experiment, imagine if ANA985 in 2019 had decided to go around. The a/c rotates and is ~50 ft above the runway, suddenly both engines spooling down, very little runway left to land on and no reverse thrust available. I am struck by how similar this scenario is to AI171. This theory would require there to have been unexpected thrust lever movement in the moments before rotation - but plausibly one pilot moving to reject, followed by an overrule or change of heart - or even a simple human error such as the recent BA incident at LGW - could achieve this. This is perhaps more likely that any sensor fault that you would expect to only impact a single engine given the redundancy of systems.

Tdracer writes that a key requirement of TCMA is to identify an engine runaway in the event of an RTO, in order to allow the a/c to stop on the runway. This will have been tested extensively - it is a big leap to imagine a false activation could be triggered. It did happen on ANA985 but through a very unusual set of inputs including application of reverse (albeit this latter point may not be relevant if TCMA logic does not distinguish between the reverser being deployed or not).

Incidentally there is an assumption the TCMA software version in place on the ANA flight had already been patched and fixed on AI171. That probably is the case but I am not sure it is a known fact.

In summary I remain baffled by this tragic accident. I have not yet read anything that explicitly rules out TCMA activation and it remains a possibility due to the vanishingly small number of factors that could shut down two engines at apparently the exact same moment when they have fully redundant systems. Fuel contamination, for example, has typically impacted each engine a few minutes (at least) apart. I am also cautious (as others have pointed out) of a form of confirmation bias about Boeing software systems with four-letter acronyms.

In my mind the cause could equally well be something completely different to anything suggested on this thread, that will only become clear with more evidence. All of the above also incorporates a number of theories, i.e. that there was an engine shutdown - that are not conclusively known.

Thank you to the mods for an excellent job.

1 user liked this post.

Xeptu
2025-06-17T13:12:00
permalink
Post: 11904292
Originally Posted by tdracer

I was in this business long enough to know that you 'never say never', it would take a pretty gross error in the TCMA logic for it to have activated without a large thrust lever movement.
especially when your talking Megawatts of Energy over multipe buses in a confined space after 10 years. There are 4 things that electronics don't like, heat, water, dust and power surge.

3 users liked this post.

EDML
2025-06-17T22:43:00
permalink
Post: 11904732
Originally Posted by D Bru
Uncommanded high trust on (at least one of) the engines during the TO-roll, in particular past V1, resulting in a discrepancy with the actual (likely derated)thrust settings, could have triggered TMCA on or just before lift-off.
That is not what the TCMA logic is supposed to do. Only high thrust with the thrust lever idle should trigger the TCMA.
D Bru
2025-06-17T23:03:00
permalink
Post: 11904743
Originally Posted by EXDAC
How would the thrust lever idle condition have been satisfied?
Originally Posted by EDML
That is not what the TCMA logic is supposed to do. Only high thrust with the thrust lever idle should trigger the TCMA.
Yes, there's another snag in the million dollar Q for the explanation. If the MN4 microprocessor can run amok, so could perhaps the TCMA not exactly act as intended. But I take in both your pertinent comments and will (as per the mods advice) from now on sit on my hands and only read until the prelim report hopefully soon!

BR, D Bru
FrequentSLF
2025-06-17T23:16:00
permalink
Post: 11904752
Still FLS with some decent engineering background,

Said so my apologies if is not pertinent to the discussion.

I am puzzled by the TCMA logic, as shown on the patent, which of course could have nothing to do with final design, but clearly in my understanding the two FADEC channels are acting in series, therefore by design they do not need to concur to shut down the engine. Am I wrong?
tdracer
2025-06-17T23:20:00
permalink
Post: 11904756
Originally Posted by EDML
That is not what the TCMA logic is supposed to do. Only high thrust with the thrust lever idle should trigger the TCMA.
Actually that's not quite true. Thrust far higher than what's being commanded by the thrust lever - it doesn't have to be at idle. But even with a CPU failure commanding high thrust (relative to TL position), the odds of that happening to two engines at the same time is astronomical.
BTW, I don't know if there is any 'crosstalk' of TCMA activation between engines on the 787. I know we don't do any crosstalk of other engines info on the 747-8, but the 787 is far more integrated, and the amount of data that can put on that ethernet based data bus is massive.
My knee jerk is that they wouldn't crosstalk TCMA status between engines, but the reality is I really don't know.

8 users liked this post.

Lead Balloon
2025-06-18T04:11:00
permalink
Post: 11904879
Originally Posted by FrequentSLF
Still FLS with some decent engineering background,

Said so my apologies if is not pertinent to the discussion.

I am puzzled by the TCMA logic, as shown on the patent, which of course could have nothing to do with final design, but clearly in my understanding the two FADEC channels are acting in series, therefore by design they do not need to concur to shut down the engine. Am I wrong?
That is correct, at least if the designed and implemented system did what the patent application said it would do.

In the words of the patent application: Both channels are \x93always actively monitoring engine function and independently have the capability of shutting down the engine.\x94

1 user liked this post.