Posts by user "M2dude" [Posts: 257 Total up-votes: 1 Page: 1 of 13]ΒΆ

M2dude
August 13, 2010, 08:45:00 GMT
permalink
Post: 5866720
Hi Stilton, that is a question that we all used to ask ourselves; not having an APU was a major pain in the butt for the fleet, particularly at charter destinations, where air start trucks, GPU's and air conditioning trucks would all have to be pre-arranged.
One problem with 'Conc' was always one of weight, (for every extra pound you carried, another pound of fuel was required) so any APU installation would have to have been light, and worth the extra weight. But the main problem was one of 'where to put the darned thing. The only suitable space available for an APU was in the tailcone, aft of the tail wheel. Now a ready supply of fuel would have been available either from the aft trim tank, #11, or from one of the two trim galleries. (For stability reasons, tank 11 was invariably left empty during ground transits). The real crunch however, was how to arrange pneumatic services from an APU: Tank 11 was directly forward of the tailcone, so this would have meant either ducting the pneumatics THROUGH the fuel tank (not a particularly good idea ) or externally around the fuselage, which would have been 'draggy' to say the least.
You could still have had an APU powering hydraulics, and in essence electrics too (the emergency generator was powered from the Green System), but without pneumatics for engine starting and air conditioning, it would really have been a waste of weight. Still, it really is a shame that there was no APU.
Historically, there were 'sort of' aux power units fitted to development aircraft: The prototypes had two GTS's (Gas Turbine Starters), one in each nacelle pair, that could start the engines without an air start truck, but these never saw the light of day in later aircraft. The most unusual unit of all was the MEPU (Monogol Emergency Power Unit), located in the tail cone. This was manufactured by Sundstrand, and was fitted to all of the development aircraft. (A derivation of a unit fitted to the X-15!!). The idea was that if you had a four-engined flameout at Mach 2, this thing would fire up, power Green and Yellow hydraulics (plus the emergency generator, again from the Green system), and give you power and control down to a safe relight altitude. The MEPU was powered by Hydrazine rocket fuel (unbelievably unstable) and I seem to remember that the thing would run for about 8 minutes. There was no way that this monstrosity would ever be acceptable on a commercial aircraft, and so a conventional RAT was developed by Dowty for the production aircraft. (Also, the windmilling engines would give you full electrics down to Mach 1.1, and Hydraulics down to about Mach 0.7, so the thing had little practical use when supersonic anyway).
I hope this extended blurb helps answer your query Stilton.


Subjects (links are to this post in the relevant subject page so that this post can be seen in context): APU (Auxiliary Power Unit)  Flameout  GREEN Hydraulic System  Ground Power Unit  Hydrazine  MEPU (Monogol Emergency Power Unit)  RAT (Ram Air Turbine)  Relight  Tail Cone

1 user liked this post.

M2dude
August 13, 2010, 17:53:00 GMT
permalink
Post: 5867846
Point taken GF, but it was discovered during development flying that that the Olympus 593 could be relit, given sufficient IAS, at almost any altitude within the normal flight envelope. The variable inlet would even be automatically scheduled, as a funcion of N1, in order to improve relight performance at lower Mach numbers. I certainly agree that you would decelerate and lose altitude fairly quickly under these conditions, however a multiple flame out was never experienced during the entire 34 years of Concorde flight testing and airline operation. There was, as a matter of interest an un-commanded deployment of a Concorde RAT AT MACH 2!! (The first indications of the event were when the cabin crew complained about 'a loud propeller sound under the rear cabin floor'. A quick scan of the F/E's panel revealed the truth of the matter). The aircraft landed at JFK without incident, and the RAT itself, apart from a very small leak on one of the hydraulic pumps, was more or less un-phased by the event. Although it sounds horrific, a prop rotating in a Mach 2 airstream, the IAS it 'felt' would be no more than 530 KTS at any time. The RAT was of course replaced before the aircraft flew back to LHR.
Not quite sure about your reference to the RAT on an F16 being Hydrazine powered; a Ram Air Turbine is just that, using the freely rotatting propellor to power hydraulics, electrics or both. Or do you mean the the F16 has an emergency power unit? Either way, it's fascinating stuff.
Yes, I do remember that the Germans used Hydrazine as a fuel during WW2: The father of one of our Concorde pilots was on an air raid to destroy one o the production plants there, this aviation business is such a small world.

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Cabin Crew  Flight Envelope  Hydraulic  Hydrazine  IAS (Indicated Air Speed)  Intakes  JFK  LHR  N1 (revolutions)  Olympus 593  RAT (Ram Air Turbine)  Relight

M2dude
August 14, 2010, 22:15:00 GMT
permalink
Post: 5870216
Galaxy Flyer
Thanks very much for your comments. It's true, that while supersonic, a windmilling Olympus engine would have sufficient N2 to keep all servics on line. (The hydraulic systems on Concorde also operated at 4000 PSI). The RAT itself was 'said' to be good down to approach speeds, fortunately we never had to find out if that was true. (Although the thing was tested routinely using a hydraulic rig to drive it and check the variable pitch speed control). Thr RAT was in fact located and stowed in the fwd part of the R/H inboard elevon Powered Flying Control Unit Fairing. It was an absolute work of art by Dowty, to make the device fit into such a small space.
Yep, an ash cloud would be particularly bad news, particularly at FL600
Stlton
You are most welcome, thank you for posting this topic also. These forums are a wonderful way for all of us out there in the aviation world to share and learn interesting information from each other.
TURIN
I remember reading By the Rivers of Babylon many MANY years ago. The terrorists, I seem to remember, had a bomb fitted inside Tank 11 (the rear trim tank) during construction 'before it was welded shut'. Not sure if the author had researched how aircraft were built, but still I guess it sold a copy or two. (Well at least you and I read it).

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): By the Rivers of Babylon  Elevons  Hydraulic  RAT (Ram Air Turbine)

M2dude
August 16, 2010, 11:09:00 GMT
permalink
Post: 5872914
ChristiaanJ
Both A/C 214 (OAG) and 216 (OAF) were Variant 192 A/C (British Unsold A/C). 216 was later converted to a 102 (British Airways) Variant, where 214 more or less stayed as a Variant 192. I'm not disputing what you say about possible APU mountings (I guess it would HAVE to be at the front section of the lower cargo hold somewhere) but I for one have certainly never seen any evidence of them. I'm still trying to imagine where the air inlet and exhausts would have to be arranged, not to mention pneumatic services ducting/hydraulics. Wouldn't it be interesting to find out?

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): APU (Auxiliary Power Unit)  G-BOAF  G-BOAG  Intakes

M2dude
August 17, 2010, 09:50:00 GMT
permalink
Post: 5874791
Hi Christiaan, yes THAT was the MEPU (Good photo of G-BBDG by the way). As far as fitting an APU in the tail cone, I still personally think that UNLESS you are prepared to pass a sizable pneumatic duct through a fuel tank , (Remember that tank 11 occupied the entire rear fuselage between the rear cargo aft wall and the front of the tail cone). then I don't think that this was really on. (It's quite possible of course that I'm missing something here, it comes with age ).
As far as the MEPU goes, all it really did was drive 2 hydraulic pumps; the Green System then powering the 40 KVA emergency generator; unless you are going to use the APU for engine starting and ground air conditioning, then I honestly don't think that there would be much point. It's interesting also to note that the MPU, being a rocket motor, needed no air intake, and as it was not driving any huge loads, the exhaust duct dould be quite narrow.

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): APU (Auxiliary Power Unit)  G-BBDG  GREEN Hydraulic System  Hydraulic  MEPU (Monogol Emergency Power Unit)

M2dude
August 18, 2010, 11:27:00 GMT
permalink
Post: 5877465
ChristiaanJ
Thanks for the MEPU link, that really brings back memories (or was that nightmares ). I remember at Fairford, a small drop of Hydrazine leaked onto the hangar floor; the next thing you heard was a really loud crack, and a after the smoke cleared, there was a sizable hole in the floor.
I'd still really like to know what the 'thoughts' on this APU issue actually were. Although as you rightly point out tank 11 already had a fair amount of 'plumbing' running through it, we are talking here about a duct with sufficient size that can provide enough mass flow to turn over an Olympus engine to at least between 10 and 20% N2. You are looking at an least 10" diameter duct, not including the copious amounts of thermal insulation surrounding it, as well as an extremely sensitive overtemperature protection system. (This tank is going to be near empty, filled with fuel vapour). I'm not really convinced that this idea would even be considered by the CAA/DGAC/FAA etc. for safety reasons alone.
Still, it's food for thought though

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): APU (Auxiliary Power Unit)  Fairford  Hydrazine  MEPU (Monogol Emergency Power Unit)

M2dude
August 18, 2010, 23:22:00 GMT
permalink
Post: 5878877
Biggles78
I must admit, it seems excessive carrying 10,000kg in a trim tank, but this fuel system really was a study in elegance. Every single drop of fuel carried was usable by the engines, and the Mach Trimming was so good that you could fine-tune the process so as to achieve the minimum drag configuration for the aircraft of 1/2 degree down elevon in supersonic cruise. One rather amusing point about the fuel Mach trimming; the airworthiness authorities insisted that the aircraft also had a conventional Mach trimmer built into the electric pitch trim system. As the aircraft was mostly flown on autopliot, assuming the fuel trimming was being done correctly (it always was), the auto-trim would wind off this Mach trimming as it was applied, the net result of course being no change to the pitch demand. This really was a totally superfluous addition to the electric trim system. (If for any reason the aircraft HAD been hand flown during acceleration, the pilot would have to nudge the trim button nose down all the time as the A/C accelerated, in order to to oppose the nose up electric trim input).
The fuel, apart from 'lighting the fires' and trimming the aircraft was also used as a cooling medium for engine and IDG oil, as well as for the hydraulic system also. Where it was used to massive effect, was as a cooling medium for the air conditioning system. Here, at Mach 2 conditions, we needed air to exit the 'packs' (on Concorde these were called 'groups') at around -25 deg's C. By the time this air had travelled through the wing ducting it had risen to a sweltering 0 deg's C, at which temperature it entered the cabin. The astonishing thing is, that the air used for this, HP compressor delivery air, P3, was at around 550 deg's C as it left the engine. The ram air itself, used to cool the Primary and Secondary heat exchangers, had a total temperature anything up to 127 deg's C, and to complete this story, the fuel itself had an average temperature of around 60 deg's C. And surprisingly enough, it was a more or less conventional air conditioning system, using air/air intercoolers, an air cycle machine, with just the addition of the fuel exchanger (between the outlet of the secondary heat exchanger and the ACM turbine) to make it any different in concept to most other air cond' systems.

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Auto-trim  Elevons  HP Compressor  Hydraulic  Mach Trim

M2dude
August 19, 2010, 10:16:00 GMT
permalink
Post: 5879669
Biggles78
Stupid, you? no way!! (Besides, I'm Mr Stupid of the aviation world, that's my title ). The thing is, out here in the world of flying machines, there are almost an infinite number of questions (and hopefully answers too). This applies to just about all aircraft from the Wright Flyer up!!.
Keep asking away, there are so many of us Concorde 'nuts' out here who are more than happy to help out/bore the socks off you.
Fuel burns: The problem was that when flying slow/taxying, Concorde was an extreme gas guzzler, even when idling each engine burnt around 1.1 tonnes/hour (so every 15 minutes after push back meant over a tonne gone). A typical taxi fuel would be around 1.4/1.5 tonnes, depending on the runway in use on the day. I'd have to leave it to some of my pilot/F/E friends to remember some of the specific fuel burns after take off etc, but I can at least give you some interesting consumption figures:
At the beginning of the take off roll, each engine would be burning around 21 tonnes/hour. (Made up of around 12 T/Hr dry fuel (Fe) and 9T/Hr afterburner (reheat to us Brits) fuel (Fr). As Fr was scheduled against Fe, as a function of inlet total temp (T1) by the time V2 was reached (around 220 KTS) the rising T1 has pushed the total fuel flow (Ft) up to a staggering 25 tonnes/hour/engine. As i've pointed out before in previous topics, although the afterburner only gave us a 17% improvement in take off thrust, it was responsible for around an 80% hike in fuel burn. (Hence that is whay it was only used sparingly). However when reheat was used for transonic acceleration, it used a dramatically reduced schedule (roughly a 60% rise in fuel flow) , so it was not quite as scary. The afterburner would be lit at the commencement of the acceleration (0.96 Mach) and cancelled completely at 1.7 Mach. After this time the aircraft would accelerate on dry power only up to mach 2 and beyond. (The cooler the temperature the quicker the time to Mach 2). On an ISA+ day, it sometimes felt that the aircraft was flying through cold porridge, and could take quite a while to get to Mach 2 after reaheat cancellation, where as on a nice ISA - day, she would go like a bat out of hell, and the AFCS would have to jump in to prevent overspeeds.
Before I hit some more numbers, let me say that with Concorde, TOC = TOD!! After reheat cancellation at Mach 1.7, the aircraft would be at FL 430. The aircraft would climb at an IAS of 530 KTS until Mach 2 was reached at fractionally over FL500. From then on the aircraft would cruise/climb as fuel was burnt, up to a maximum of FL600. On warmish days (eg. the North Atlantic) TOD would typically be around FL570-580. On a cool day (the lowes temperatures would of course be reached in the more tropical regions; the LGR-BGI sector encountered this), FL 600 would be reached easily and she would love to climb some more. BUT, the aircaft was only certificated to 60,000' with passengers onboard, for decompression emergency descent time reasons, and so we were stuck with it. The pity is of course, the fuel burn would have been improved, but we never were able to take advantage of this. On test flights however, the aircraft would routinely zoom climb to FL 630. On her maiden flight, aircaft 208 (G-BOAB) reached an altitude of 65000'; the highest recorded Concorde altitude was on one of the French development aircraft, which achieved 68,000'. On a technical point, the analog ADC's were 'only' calibrated to 65,000'.
Anyway, back to some figues; at Mach 2, 50,000', the typical fuel burn per engine would be around 5 tonnes/hour, falling to around 4.2 tonnes/hour at 60,000'.

THE NOSE You are quite correct in your assumption, there were two positions of droop: 5 deg's for taxi/take-off and low speed flight and 12.5 deg's for landing. The glazed visor retracted into the nose and could ONLY be raised once the nose was fully up, and had to be stowed before the nose could move down. There were 2 emergency nose lowering sysyems; one using stby (Yellow) hydraulics and a free-fall system. Free-fall would drop the nose all the way to 12.5 deg's, the visor free falling into the nose also.

Last edited by M2dude; 19th August 2010 at 11:40 . Reason: mistooks

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): AFCS (Automtic Flight Control System)  Afterburner/Re-heat  Depressurisation  G-BOAB  IAS (Indicated Air Speed)  Intakes  Transonic Acceleration  V2  Visor

M2dude
August 20, 2010, 11:06:00 GMT
permalink
Post: 5881873
Biggles78
Mate, if you could have seen my jaw drop when I read the T/O burn you would probably hurt yourself laughing to much. That is just incredible but the cruise flow seems like stuff all especially considering the speed. The idle flow was also a bit of a jaw dropper.
I know these fuel flows seem crazy (If take-off fuel flows had been maintained the endurance of the aircraft would have been about 55 minutes!!). But as the majority of the flight was carried out at Mach 2 and above, with the relatively miniscule fuel flows, you can see how we were able to cross the Atlantic with relative ease. It was the subsonic bit that was the pain.
Was surprised, yet again, that Mach 2 was achieved without reheat. They really were/are an amazing powerplant.
The powerplant was as you say truly amazing. We had an, as yet, unmatched engine/intake combination, with a variable primary and secondary nozzles. The variable intake allowed supersonic operation with maximum pressure recovery, minimum aerodynamic drag, as well as extreme operational stability. (Extreme temperature shears, that would have caused surge/unstarts in military installations) were dealt with as a total non event). It's astonishing to believe, but at Mach 2 cruise, the intake provided approximately 63% of the powerplant thrust. It was controlled by the world's first airborne digital control system. (The system computers were built by the Guided Weapons Division of what was then BAC). The combination of the variable intake, plus the LP and HP compressors gave an overall compression ratio of 80:1.
The engine itself, being supplied with air at an ideal pressure, could run at an almost conststant TET, thanks to the variable primary nozzle. This also allowed N1 and N2 (corrected for total temperature) to be controlled more or less independently and run as close as possible to their separate surge lines throughout the entire flight envelope.
The variable secondary nozzle (wide open above Mach 1.1) allowed the jet efflux to gently expand against a cushion of air that was passed over the rear ramp of the intake, through the engine bay and into the annulus of the nozzle itself. This prevented thrust being wasted by the jet efflux widely splaying as it met ambient air that was at a pressure of as little as 1.04 PSIA.
It was this integrated powerplant that made true supersonic cruise possible
On my list of regrets, not getting a flight on Concorde would be in the top 5. If they hadn't grounded them what sort of life did the airframes have left in them?
The airframe life issue was sort of like 'how long is a piece of string?'. The airframes are lifed in supersonic cycles, (which had been extended before, with modifications) and studies were always underway as far as further life extensions were concerned. (Basically the airframe was as tough as a brick outhouse in structural terms). The only real area of concern was the crown area (the roof ). There was a design flaw here in that the structure had not been designed fail-safe (allegedly by designed a Korean designer at A\xe9rospatiale who, it was said, went a bit loopy). When the FAA evaluated the design (in order for the aircraft to be registered in the USA, for Braniff operations out of IAD) they wanted 'crown planking' to be fitted externally, which would have added over a tonne to the weight of the aircraft, as well as producing some not inconsiderable drag. Fortunately a compromise was reached and additional NDT inspections were carried out, as well as more limited structural modifications. There was a long term, cost effective solution being studied, which would have cured the problem altogether. (The changes would have been mandated, over new requirements for ageing aircraft)

Nick Thomas
Nick, the whole expansion issue was one of the biggest issues that had to be addressed. Wiring looms would 'snake' in some underfllor areas to take up expansion, but the biggest difficulty of all were the mulitudes of hydraulic lines. These required sliding expansion joints, with of course seals to prevent leakage. When a seal deteriorated YPU GOT A LEAK!! (Fluid at 4000 PSI tends torun for freedom very quickly ). As far as fittings go, ChristiaanJ is quite right, you tried to anchor at one end only. I seem to remember that the passenger seat rails travelled over a roller afair. Fuel lines wer less of a problem, because their relative lengths were less.
I also agree wholeheartedly with ChristiaansJ's explanation about the 'friction' thing, I never really liked those stories. As a matter of interest, 127 deg's, for Mach 2, that would be at ISA +5 (-51.5 deg's C). Any warmer than that and we could not achieve Mach 2, due to the Tmo limit of 127. I remember one year, for several weeks we had unusually high north Atlantic temperatures; these impacted both the flight time AND the fuel burn. The further away you were from Mach 2, the higher the fuel consumption. (The faster you flew, the less fuel you burnt. How's that for a paradox?).
At ISA (-56.5 deg's C) temperatures, the total temperature was at around 118 deg's C.

ChristiaanJ
I remember the 17.5 degree position on the nose; it always looked as if the aircraft was trying to eat ants to me . I can not recall personally anyone removing the 12.5 deg' stops for access, although this could of course have been done on your side of the 'puddle' I guess.
As far as the APU ducting issue goes (hee, hee, not often we disagree Christiaan ) we are just going to have to agree to disagee about this, although I accept that two 4" diameter pipes (PLUS THERMAL INSULATION) might have done it, BUT I still stand by the other points.

Stlton
Not to beat a dead horse, but, on the choice of location for APU, the 727 had a problem with this but for different reasons. Because of the location of the engines that were all mounted at the rear, the Aircraft was quite tail heavy and adding more weight with an APU in the tail section was not desirable.The solution found that I have not seen in any other Aircraft was to mount it in the wheel well transversely across the keel beam with the exhaust out and over the right wing. Quite unusual but it worked fine with the restriction that it could only be operated on the ground.
Its all academic now but, just out of curiosity could this have worked on the Concorde
Unfortunately not; the keel beam area was extremely thin and there was not anywhere near enough room. Interesting solution on the 727 though, I never knew that one.

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): APU (Auxiliary Power Unit)  Afterburner/Re-heat  Braniff  Engine surge  Flight Envelope  Hydraulic  N1 (revolutions)  Nozzles  TMO (Temprature Max Operating)  Temperature Shear

M2dude
August 20, 2010, 14:36:00 GMT
permalink
Post: 5882311
Hi Nick, thanks again for your comments. As far as not being a commercial success, for the airline this side of the Channel it was a HUGE commercial success (but of course I accept that in manufacturing terms this was far from the case. The project suffered from very poor financial control). Concorde was the first commercial FBW aircraft as you rightly surmised.
A huge amount of Airbus work was 'burried' in the Concorde project; at Filton a large amount of Airbus components came through that were almost identical to those on Concorde. (witness the STRIKING similarity between the A300 main gear and that of Concorde). Apologies if this post is a little tardy, it's done from my IPhone).

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Airbus  FBW (Fly By Wire)  Filton  Landing Gear

M2dude
August 21, 2010, 09:47:00 GMT
permalink
Post: 5883692
Biggles78
Last one for this post. What was the CoG range? I remember when I started flying and finally twigged to what it was all about that the PA28 had something like a 5" from the forward to aft limit and was massively surprised by the small "balance point". Trim tanks on 1 aeroplane I flew would have been most welcome.
Sorry Biggles78, I'd forgotten to answer your CofG query, so here we go: CofG was a really critical parameter on Concorde, being a delta, with no tailplane made it more so at take off speeds, and as we've previously said, was how we trimmed the aircraft for supersonic flight. CG was expressed as a percentage of the aerodynamic chord line. To get indication of CG you needed to know the mass of fuel in each tank; easy, from the FQI system. You needed to know the moment arm of each tank, (fixed of course). You then needed the zero fuel weight (ZFW) and zero fuel CG (ZFCG); these were manually input into the CG computers by the F/E, from load control data. The final parameter you needed was total fuel weight, again easy from the FQI system.
The 'normal' T/O CG was 53.5%, but in order to increase fuel weight (and hence range) an extra 'bump' was enabled to allow a max T/O CG of 54%. (CG was indicated on a linear gauge, with forward and aft limit 'bugs' either side of the needle. These bugs would move as a function of Mach and at the lower end of the speed range, A/C weight also). As the A/C accelerated, the limit bugs would move rearwards (with of course the rearward shifting centre of pressure) and so the fuel would be moved from the two front trim tanks 9 & 10 to the rear tank. 11. Once tank 11 reached it's preset limit (around 10 tonnes), the remainder of the 'front' fuel would automatically over-spill into tanks 5 & 7. (Once the fuel panel was set up, the whole process was controlled with a single switch). At Mach 2, the CG would be around 59%, the whole rearwards shift being in the order of 6'. As we said before, the 'final' CG could be tweaked to give us a 1/2 degree down elevon, for minimum drag.
I really hope this helps Biggles78.

Guys, back to the Airbus thing; My friend ChristiaanJ gave some really accurate insights, (he always does) but there is another legacy that carries on the this day; some of the audio warning tones were COPIED from Concorde into Airbus. (For example, the A/P disconnect audio is identical). I think this is great, and gives 'our' aircraft a lasting everyday legacy.

As far as the fly by wire goes, Concorde had a relatively simple analog system, with little or no envelope protection (Except at extreme angles if attack). As has been previously poted before, production series test aircraft 201, F-WTSB, pioneered the use of a sidestick within a new digital fly by wire Controlled Conviguration Vehicle sytem, with envelope protection and attitude rate feedback. (This evolved into the superb system known and loved by the Airbus community). It is a really bizaar twist of fate that the Concorde FBW system has more mechanical similarities to the system used in the B777 than Airbus. (Mechanically similar at the front end, with an electric backdrive system moving the column in A/P mode; Concorde being backdriven by a hydraulic relay jack).
As a final piece of irony; the Primary Flight Control Computers on the B777 are designed and built by GEC Marconi Avionics in Rochester Kent, now BAe Systems. This is the same plant where Elliot (becoming Marconi and finally GEC Marconi Avionics) developed and built the UK half of the AFCS computers. Isn't this aviation world strange?
Galaxy Flyer
Your inputs here are great, and I'm sure appreciated by all. (I assume from your name that you were a C5A pilot. While I was in the RAF on C-130's, our Lockheed rep' used to supply us all with company magazines, that were full of stuff on this new (it was then) giant of the sky. I fell in love with it there and then).
Anyway, back to Conc': The decel' positions were carefully worked out and adhered to; the aim was to be subsonic to within (I think) 50 nm of the east coast. I'll wait for one of my Concorde pilot friends to confirm that here, but i think I'm correct. I do have a fond memory of one flight out of JFK; we were temporarily 'held' by Boston ATC to Mach 1.6 (and at around FL440) because of an Air France Concorde heading for JFK. We saw this guy above us, at around FL580 on a near reciprical , doing Mach 2, screaming straight over the top of us. We were excited by this amazing spectacle, and so were the AF crew over the VHF ('you never boomed us, did we boom you?'). But the most excited person of all was this guy in Boston ATC. ('I've never seen anything like it guys, your two blips whistled over each other on my my screen like crazy').
Stliton
As far as the F/D noise levels were concerned, once the nose and visor were raised, it was as if someone had switched off the noise . The main source of noise up there was just the equipment cooling, and that was not bad either. It was, in my view, little noisier up than most subsonics. (But not the 744, where you are so far away from all the racket ).
Ozgrade3
You're making us blush here; thanks for your comments, I think we are just trying to share some of our experiences (and 'bit's we've picked up over the years).
From my perspective, I did write some stuff used by our pilots, AF even got a copy or two I think.

Last edited by M2dude; 21st August 2010 at 12:01 . Reason: couple of corrections; this guy can't spell

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): AFCS (Automtic Flight Control System)  Air France  Airbus  C of G  Elevons  F-WTSB  FBW (Fly By Wire)  Hydraulic  JFK  Sidestick  Sonic Boom  Visor

M2dude
August 21, 2010, 15:11:00 GMT
permalink
Post: 5884164
What I omitted to say about the Concorde FBW was that autostabilisation commands were superimposed onto the manual/autopilot demands directly at powered flying control unit (PFCU) level, on all 3 axis. . This made the aircraft superbly stable and precise to handle at almost any speed or condition. Apologies for IPhone again

Last edited by M2dude; 21st August 2010 at 23:02 .

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): FBW (Fly By Wire)  PFCU (Powered Flying Control Units)

M2dude
August 22, 2010, 00:47:00 GMT
permalink
Post: 5884837
Biggles78
Am I right or even slightly so in thinking that cruise climb and cruise descent was the flight and there was minimal actual level cruise in the "pond" crossing?
You are right on the button. Under NORMAL circumstances, Concorde never flew supersonically in level flight. You would always follow the Vmo bug on the ASI during the supersonic climb. (The ASI pointer actually nudged into the bug; it was a beautiful design). Initially this would be at a constant Vc of 400 kts, the 400 KT segment then went off towards 530 KTS as you climbed. You then 'stuck' to 530 knots until a fraction over 50,000', when 530 KTS became Mach 2. You would then continue the climb at between Mach 2 and around Mach 2.02, depending on the temperature of the day. (the colder the temperature, the faster you tended to fly). There was an extremely complex AFCS mode for the supersonic climb, that I promise to cover in anaother post.
So yes, on the whole, TOC did equal TOD.
The 'subsonic climb' wasn't quite as you thought; you'd normally subsonic climb to FL280, staying there (at Mach 0.95) until the acceleration point. Mach 0.95 was 'subsonic cruise'. But you were on the right track.
Oh, and NOPE, they never boomed us either
Nick Thomas
If an engine had a fire or an explosive failure; it would seem on the face of it that the adjacent engine could easily be affected. As everything on Concorde has a sound technical reason. I have been wondering what that reason or reasons was? and also if there was any inbuilt dividing protection between engines on the same wing?
Keeping the powerplants as separate as possible was a major design headache, but generally they were just that; there was a titanium centre wall between the two engines and a really substantial heatshield above the engine also, to protect the wing above. To give you an idea how all this worked in practice, in 1980 G-BOAF, flying at Mach 2 between JFK and LHR had a major failure of one of the engines, caused by a defective material ingot used in the forging of one of the 1st stage LP compressor blades; which was subsequently shed. (The analysis done by Rolls Royce ensured that no such incident ever happened again in the life of Concorde). The resulting mayhem terminated in a large amount of engine debris flying around, and a titanium fire burning in the engine bay also. The aircraft however decelerated and landed at Shannon safely. On inspection, although there was extensive damage found in the engine bay, the adjacent engine was completely unmarked, protected by the titanium centre wall, and more importantly, when the heat shield werer removed, the wing was found to be completely undamaged!
The only problem you ever had with the dual nacelle arrangement was if you had an engine surge above Mach 1.6 (These were relatively rare, but could happen with an engine or intake control system malfuntion). If one engine surged, the other would surge in sympathy, because of the shock system being expelled from one intake severely distorting the airflow into it's neighbour. These surges were loud, quite scary (to the crew that is, most passengers never noticed much), but in themselves did no damage at all. Delicate movement of the throttles (employed during the subsequent surge drill) would invariably restore peace and harmony again to all. (The intake on Concorde was self-starting, so no manual movement of the intake variable surfaces should be needed in this event). After this was over, normal flying was resumed again As I said before, these events were relatively rare, but when they did occur, they would be dealt with smartly and professionally; the engine and intake structure being undamaged. (Post surge inspetion checks were always carried out on the ground after an event, on both engine and intake, but nothing much was EVER found).
Would I also be right to assume that the max power delivered by the engines would reduce at altitude, thus even if the engines were run at near to available max power at high altitude it would be no way near the max power at lower levels?
The reduction of fuel flow as you climbed was quite interesting. Although the throttles would be 'at the wall' (dry power remember), the electronic control system was constantly winding fuel off as a function of Static Air Temperature, as well as falling Total Pressure. The system was always 'tweaking' as you climbed, and you only used as much fuel as you really needed to stay at Mach 2. There were various ratings that would also be manually selected at various phases of flight; each rating change 'detuned' the engine slightly, so yes, you did not run the engine when flying fast at anywhere near the levels you did at lower speeds/altitudes. The engine final ratings were changed from 'Climb' to 'Cruise' manually at FL 500, just as you hit Mach 2).

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): AFCS (Automtic Flight Control System)  Engine surge  G-BOAF  JFK  LHR  LHR-JFK Route  LP Compressor  Shannon  Vmo

M2dude
August 22, 2010, 01:02:00 GMT
permalink
Post: 5884855
ChristiaanJ
I don't think there was a single microprocessor on board Concorde until the days that they had to fit TCAS (in the '90s, IIRC).
For once my friend you're not quite correct. The Plessey PVS1580 Aircraft Integrated Data System, fitted to all BA aircraft from mid' 1977 used a microprocessor in the data entry panel. In the mid-80's, a fault interrrogation module was fitted to the Engine Control Units; this used a 4 bit Intel 4004. Otherwise (as usual ) we agree.
I've some production series CG diagrams, that I will post here when I can find out how to do it......

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): British Airways  C of G  Microprocessor

M2dude
August 22, 2010, 01:09:00 GMT
permalink
Post: 5884859
All Posters
I'm really touched by your comments (as is I'm sure ChristiaanJ), thank you. It's amazing that so many aviation people are still fascinated by this wonderful aircraft.
I'll happily continue to share some more anecdotes if I can, and try and answer any queries that you may have, either here or through PM.
Thank you all for your kind comments.

Subjects: None

M2dude
August 22, 2010, 11:29:00 GMT
permalink
Post: 5885435
Galaxy Flyer
One more question, could the Concorde lose pressurization, descend to some low level (FL180 or below, perhaps FL100) and make it to scheduled destination or would a divert to Shannon or Gander be required? What was a low level cruise speed?
We never had a case of lost pressurisation, ever. The cabin windows had dual laminated panes; an inner pressure pane and an outer thermal pane. We had dual systems that kept the cabin at a max diff' of 10.7 PSI, the engine bleeds pushing about 200lb of air per minute into the cabin. This allowed you to fly the cabin at an altitude of around a 6000' maximum only, right up to TOD. If you HAD to fly subsonically, the ideal was Mach 0.95 at FL290. (Subsonically the aircraft had similar range to normal, but took well over twice as long of course). If however you had to shut down an engine, your range deteriorated quite dramatically, and a diversion was usually sought.

It's great that Bellerophon is posting here again; we need a steely eyed Concorde pilot's input here (not just the boffins/nutters and nerds [that's me ]. To touch more on a couple of his valid points;
Fuel burn: The aircraft would naturally require less fuel as she became lighter and as a consequence gently climbed to maintain cruise Mach number, this is what the engine control system was doing all the time, even though the throttles were wide open it was 'tweaking'.. BUT, the decreasing IAS as you climbed, due of course to the reducing density, just like any other aircraft meant that drag was reducing too, so it was a combination of both of these factors, reducing weight and reducing drag.
Flying controls: It was a slightly weird but wonderful arrangement; pilots inputs would move a servo valve in the hydraulic relay jack, the jack would move in response and drive both a resolver AND mechanical linkages. The resolver ourput was sumed with the flying control position resolvers, and the error signal was fed into an autostab' computer, where it was summed with stabilisation demands (primarily axis rate and acceleration). The autostab computer would the directly drive the surface, and the reducing error signal would reduce the demand etc. While all this was going on, the mechanical linkages would slavishly follow, but as long as you were in FBW (what we used to call 'signalling') mode, these mechanical inputs were de-clutched at the PFCU, so did nothing at all. Only if there was an EXTREMELY unlikely failure of BOTH FBW channels would these inputs be clutched in and the flying control group (rudders, inner elevons or outer and mid' elevons) would then be in Mechanical signalling. The system redundancy was checked after engine start on every flight. But to reinforce what Bellerophon stated, there was no mechanical reversion here; without hydraulics you had nothing. Another aside here; the designers, being paranoid like all good designers (no offence Christiaan ) were worried what would happen if the controls would somehow jam up. A jammed mechanical flying control input run itself would have no effect on FBW operation whatsoever, due to spring boxes being fitted to the runs. A 'Mech Jam' light would be set, together with a separate red light and audio warning, but this was all. But to completely protect against the aircraft was fitted with a Safety Flight Computer (SFC) system. The idea was, if a control axis (pitch or roll only) jammed up, the captain could press down on a switch light set between the two halves of his control wheel, (at the centre of the 'W') and the Emergency Flight Controls would activate. Strain gauges at the front of the control wheel, two sets on each control column for pitch and roll axis, would input into an SFC that would covert the control force into an elevon demand. These commands were then fed into the autostab' computers, and hence directly into the controls. (A little like L-1011 CWS in a way). There was a little test button that was used to test this system, again after engine start. So although the controls were jammed, the aircraft could still be flown. (Never used in anger I'm pleased to report).
But there was a problem; if this system was inadvertantly used, the results could have been catastrophic, as the system was extremely sensitive indeed, and full elevon movement could be enabled with only moderate effort. Because of this hairy prospect some safeguards were obviously put in place. The first safeguard was an interlock in the autostab' engage logic; If the switchlight had been inadvertently selected beforehand (the light was green by the way) you would not be able to engage pitch or roll autostab's (both channels too) so you would not be going flying until that was fixed. The second safeguard was a little more subtle; A plastic, frangible cover was fitted over the switchlight, unless the captain pressed reasonably hard the cover would prevent the switchlight from being pressed. At least that was the theory, in practice this little bit of plastic could be a pain in the ass . It was carefully fashioned, and I seem to remember BAe charging the airlines a few hundred pounds each for these things. If some wally fitted the cover upside down (and unless you were careful it was easy to do) THE THING WOULD NOT BREAK!! I remember at Fairford in 1976, G-BOAD was on pre-delivery flight testing, and the late great test pilot John Cochrane was doing a test of the system. The cover on this occasion HAD been fitted upside down, and of course he could not plunge his thumb through it and engage the EFC button. After trying everything, in the end he removed a shoe, took out his pen, and smashed the plastic cover until it broke. (It's OK, the autopilot was engaged at the time). Unfortunately, his combined shoe/pen emergency device also wrecked the switchlight as well, so the system still could not engage. (There was only a switchlight on the captain's side). After he landed and he confronted us all with his dilemma, he was shaking; not with rage but with laughter. (This was the great John Cochrane, sometimes the dour Scotsman but he was always able to see the lighter side). After that event, careful instructions were issued regarding the fit of the cover, and it was modified and made a little more frangible.

Last edited by M2dude; 22nd August 2010 at 23:02 . Reason: will engineers ever learn to spell?

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Auto-pilot  Auto-stabilisation  Captains  Elevons  FBW (Fly By Wire)  Fairford  G-BOAD  Hydraulic  IAS (Indicated Air Speed)  PFCU (Powered Flying Control Units)  Pressurisation  Shannon

M2dude
August 23, 2010, 07:28:00 GMT
permalink
Post: 5886815
Biggles78
What is the Yellow Arc on the Mach metre that starts at about M1.12?
This is the minimum Mach number that can be flown with the existing CG. (which would be around 59%). Just as the CG indicator (not shown in this photo) gave minimum and maximum CG for a given Mach number, the Machmeter gave a reciprical indication also). You can also see that as the aircraft is not flying at Vmo any more, being at Mach 2 cruise, that the VSI pointer is now away from the orange and black Vmo bug. At our 'not so coffin corner', now that the aircraft is at maximun alllowable altitude, Vmo would naturaly coincide with Mmo; the orange and black Mmo bug being shown at Mach 2.04. This really superb photo taken by Bellerophon gives a graphic illustration of what the panels looked like at Mach 2. Note that the with the TCAS VSI Concorde retained it's original linear VSI also. (Miust have beeen the only aircraft flying with FOUR VSIs. (The originals had to be retained due to the fact that the autopilot Vert' Speed Mode error was derived from the indicator itself. As far as TCAS goes, R/As werer inhibited above FL300 (on acceleration this would coincide with the aircraft becoming supersonic, and the mfrs would not countenance the aircraft doing extreme manoeuvrs as a result of TCAS RAs at supersonic speeds).
The center rear fuselage gear unit, what was that for? I have seen it deployed on many occasions but I can't for the life of me remember if it was during T/O or LDG however it didn't seem to be extended every time the aeroplane flew. Was this used during loading so she didn't accidently "rotate" at the ramp or to avoid a tailstrike during LDG? I can't imagine an over rotate during T/O.
The tail wheel was lowered for all 'normal' gear cycles (not stby lowering of free-fall). It was designed to protect the bottom the nacelles in the case of over-rotation, but in practical terms the thing was a waste of space (and weight) and a simple tail skid (used on the prototypes) would have sufficed. Any time that the tail wheel contacted the ground, it would ALWAYS collapse, damage the tailcone structure and in fact aforded no protection whatsoever. Fortunately these events were EXTREMELY few and far between. The biggest problem with the tail wheel was a major design flaw: On gear retraction the assembly would retract in sequence with the nose and main gear, and as it entered the opening in the tailcone, it would release over-centre locks that were holding the spring-loaded doors open. The doors would then firmly spring shut behind the gear assembly and finish the job. UNFORTUNATELY this was a very poor design; if for any reason one of the two doors had not gone over-centre on the previous gear lowering, it would be struck by the retracting tail wheel gear and cause structural damage to the local skin area, that would have to have a repair done. Unfortunately these events were not quite so rare, and several measures were tried to reduce the chance of this happening. Although not a safety issue, it was an issue that was a total pain. (As a matter of interest, G-BOAC had this happen on one of it's first test flights out of Fairford in 1975).
Nick Thomas
As regards fuel burn: was there any difference between each indvidual airframe and if so was it significant enough to be considered when calculating the trip fuel? Also did different engines also have slightly different fuel consumption?
As ChristiaanJ said, the last two BA aircraft WERE lighter than the others, and would be preferred aircraft for certain charters. But that is not to say that any aircraft could not happily do ANY sector. We fortunately had no distorted airframes in the British fleet, so this was never an issue. There was very little spread, regarding fuel consumption between different engines; one of the best parts about the Olympus 593 was that it hade very little performance deterioration with time, it was an amazing piece of kit.
Whilst on the subject of engines, I just wondered how many were required to keep the BA Concorde fleet flying? What sort of useful life could be expected from the engines?
Time on wing for the engines was a real variable. Each engine was built up of modules, each one of these had a seperate life. In the early days of operation, time on wing was quite poor, and MANY engines would be removed on an attrition basis. One of the early failure problem was the fuel vapourisers inside the combustion chamber were failing, taking bits of turbine with it!! A Rolls Royce modification that completely changed the design of the vapouriser not only solved the problem completely, but also increased the performance of the engine. As the engine matured in service time on wing greatly improved, and in service failures became a thing of the past. A 'trend analysis' was done after each protracted supersonic flight, where engine parameters were input into a propiatry RR computer program, that was able to detect step changes in the figures, and if this were the case, more boroscope inspections were carried out. The OLY time on wing was nothing compared to the big fan engines, but the conditions that it operated under bore no comparison. Not really sure about absolute figures on this one Nick, I'll ask one of my Rolls Royce friends and see if I can find a figure.

Last edited by M2dude; 19th January 2011 at 12:42 .

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Auto-pilot  British Airways  C of G  Fairford  G-BOAC  Landing Gear  Mmo  Olympus 593  Rolls Royce  Tail Cone  Vmo

M2dude
August 23, 2010, 12:20:00 GMT
permalink
Post: 5887403
The reason that #4 engine was limited to 88% N1 on take-off was an interesting one, down to something known as 'foldover effect'. This was discovered during pre-entry into service trials in 1975, when quite moderate levels of first stage LP compressor vibrations were experienced at take-off, but on #4 engine only. Investigations revealed that the vibrations were as the result of vorticies swirling into #4 intake, in an anti-clockwise direction, coming off the R/H wing leading edge. As the engine rotated clockwise (viewed from the front) these vorticies struck the blades edgewise, in the opposite DOR, thus setting up these vibrations. The vorticies were as a result of this 'foldover effect', where the drooping leading edge of the wing slightly shielded the streamtube flowing into the engine intake. #1 engine experienced identical vorticies, but this time, due to coming off of the L/H wing were in a clockwise direction, the same as the engine, so were of little consequence. It was found that by about 60 KTS the vorticies had diminished to the extent that the N1 limit could be automatically removed. Just reducing N1 on it's own was not really enough however; some of this distorted airflow also entered the air intake through the aux' inlet door (A free floating inward opening door that was set into the spill door at the floor of the intake. It was only aerodynamically operated). The only way of reducing this part of the problem was to mechanically limit the opening angle of the aux' inlet door, which left the intake slightly choked at take off power. (The aux' inlet door was purely aerodynamically operated, and diff' pressure completely it by Mach 0.93).

Last edited by M2dude; 24th August 2010 at 07:31 . Reason: A few corrections

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Intakes  LP Compressor  N1 (revolutions)  Vortex

M2dude
August 24, 2010, 08:48:00 GMT
permalink
Post: 5889012
Biggles78
M2 , it appears the tailwheel was, so far, the only "fault" in an otherwise extreme machine. Were there any other items like the tailwheel that were unworthy to be in her?
Does anyone have a tech drawing of the "sliding seals" used in the hydraulics. I have trouble visualising something that could withstand the 4,000psi pressure. Why was such a high pressure used? After all the control surfaces couldn't have required that much input to effect an authority movement. I understand it was also a special fluid that was used. Was this because of the pressure it was under or the temperature extremes?
The tailwheel design really was the one exception in poor design terms, but I'm sure that if the aircraft was doing what she should be doing right now, (you know routinely flying across the Atlantic and beyond, instead of languishing in museums), modifications would have finally put this particular malady to bed). In design terms, the rest of the aircraft was nothing short of a flying work of art, a masterpiece. Having said that though, personally I would rather that four rather than three hydraulic systems had been used. Originally there were four systems in the design, but the RED system was deleted, as it was felt to be superfluous. My own view is that this particular decision was total poppycock. Oh, and Green, Blue and Yellow hydraulic systems was something else that Airbus copied from Concorde.... although we ourselves pinched that idea off of the Comet ).
As far as the hydraulic expansion joints go, I will scour around and see if I can find a diagram for you. Try and picture two titanium (or stainless) tubes, on inside the other, with a sealed chamber being formed at the join. Inside this chamber were multiple lands fitted with special viton GLT seals. They did work incredibly well, although occasionally one of the seals gave out, and things got wet, VERY WET.
As far as the 4000 PSI hydraulic system, as EXWOK quite rightly pointed out, the loading on the flying control surfaces were immense throughout the whole flight envelope. (Picture alone just the T/O from JFK RWY 31L, where the aircraft is tightly turning and the gear retracting, all at the same time). As well as the flying controls and landing gear, you also had the droop nose to consider, four variable engine intakes as well as a couple of hydraulically operated fuel pumps. Oh, and in emergencies, a hydraulically driven 40 KVA generator too. The reason that 4000 PSI was chosen was that if a large amount of hydraulic 'work' was to be done, the only way to keep the size of jacks and actuators to a reasonable size/weight was to increase the system pressure by 25% from the normal 3000 PSI. (On the A380 they've gone a step further and gone for 5000 PSI, saving them over a tonne on the weight of the aircraft).
Concorde used a special hydraulic fluid, Chevron M2V. This is a mineral based fluid, as opposed to the ester based Skydrol, used by the subsonics. The reason that we went for a different fluid was a simple one; Skydrol is rubbish at the high temperatures that Concorde operated at, no good at all in fact, so we needed something better and in M2V we found the PERFECT fluid. As an aside, unlike Skydrol, that attacks paintwork, certain rubber seals, skin, EYES etc., M2V is completely harmless, wash your hair in it. (I did, several times when we had leaks. Thinking about it, maybe THAT is why my hair is such a diminished asset

EXWOK
It's so great having another of my pilot friends diving in to this post, welcome welcome
I remember the Mech' Signalling part of the air tests, my lunch has just finished coming back up thank you. (for interest chaps and chapesses, with mechanical signalling, using just the conventional control runs under the floor, there was no auto-stabilisation).

The artificialfeel system worked incredibly well I thought, I always found it curious that the peak load law in the computer was at the transonic rather that the supersonic speed range. It was explained to me long ago that this was because the controls really are at their most sensitive here, but at high Mach numbers are partially 'stalled out', due to shockwave movements along the surfaces, and were therefore less effective. (For this reason I was told, the inner elevons were so critical for supersonic control, being the most effective of all elevons at high speed).

To all , I forgot to mention in my previous post regarding the engine failure in G-BOAF in 1980; I remember an FAA surveyor, who was taking a look at the carnage within the engine bay, saying that in his opinion, no other aircraft in the world could have survived the intensity of the titanium fire that ensued. Analysis showed that the fire was successfully extinguished, possibly at the first shot of the fire bottle. This was a testament to the way that the Concorde engine bay could be completely 'locked down' when the fire handle was pulled, as well as to the way that the whole engine installation was technically encased in armour plate. To put all this in context, acording to Rolls Royce a titanium fire, once it takes hold, can destroy the compressor of a jet engine in four seconds.


Dude

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): Airbus  Elevons  Engine Failure  Flight Envelope  Fuel Pumps  G-BOAF  Hydraulic  Intakes  JFK  Landing Gear  Shockwave  Tailwheel

M2dude
August 24, 2010, 11:02:00 GMT
permalink
Post: 5889280
MEMORIES
Like so many in the Concorde family, I have millions, I'd like to share a couple here. I remember at Fairford in mid 1974, a CAA test pilot (I honestly forget the gentleman's name) was taking the British pre-production A/C 101 (G-AXDN) for a special test flight. The reason that this flight was so special was that for the first time, the CAA were going to do an acceptance flight trial of the brand new digital air intake system. This revolutionary system had been retro fitted to 101 barely a year earlier, and being a brand new (and totally unique, in electronics terms) system had been plagued with teething troubles. It was quite reasonable for any airworthiness authority to have serious misgivings about any system that was going to wave great big metal lumps around in front of the engine compressor face, and that if only a few degrees out from the commanded position out could cause the engine to 'backfire' etc.
So anyway, 101 took off and disappeared into the very blue sky and we waited, and waited, AND WAITED. (I'd only left the RAF and joined the project a few months previously, and did not want my new association with this amazing aircraft to end). I was biting my nails, drinking coffee, losing my hair... (without the help of M2V ). Anyway after about 2 1/2 hours the aircraft returned to Fairford, and everybody crowds around the crew for the debrief. A very stern faced CAA pilot looked at us all, broke into a grin and said "as far as I'm concerned gentlemen, you've got yourselves an airliner". At that point the room was a study of total happiness, blessed relief, and a need to go to the loo..... But from my point of view, I will remember those words forever.
101, which now resides at the Imperial War Museum Duxford was the fastest Concorde ever. She achieved Mach 2.23, which was an incredible irony, as Concorde can trace a large part of it's developement history back to the BAC 223, proposed SST.
As far as flying memories go, I just don't know where to start; My first ever Concorde flight was in November 1976, out of Fairford on a pre-delivery test flight on G-BOAD. (Now sadly bobbing up and down on the Hudson, next to the USS Intrepid). I was staggered how fast and high we flew (Mach 2.08, FL580). Most of my flying up to that date had been in C-130's in the RAF, at around 340 KTS and FL300; Concorde also being infinately quiter in flight than the good old Herc'. I remember a BA QA guy showing me how I could touch the skin of the aircraft at Mach 2 (You reached behind a door busstle flap, moved your hand through some insulation until you felt bare metal). OUCH!! it was hot, very hot.
But I think one of my most memorable flight memories was aboard G-BOAG, (now residing in the Boeing Museum of Flight in Seattle) returning from BKK, having stopped off to refuel in BAH. We were forced to fly subsonic over Saudi, and got caught in this amazing electrical storm, There was St Elmo's fire cracking and bubbling all over the visor panels, but just as incredible was the long blue electrical discharge coming off of the nose probe; it seemed to extend about 50' in front of the aircraft. The crime was, none of us on the F/D had a camera. Every time I bump into the captain on that day (are you reading this Ian?), we go back to remonissing about that incredible flight. Also, later on the same sector, after we had decelerated to subsonic cruise again, this time flying up the Adriatic, we had another fascinating sight: It was getting quite dark now, and here we were, travelling at Mach 0.95 at FL290, when above us was all this Mach 0.8 ish traffic at around FL330-350. All we could see were all these navigation and ant-coll' lights above us, seemingly travelling backwards. It was quite a sight. On the original BAH-BKK sector a week earlier, we flew through some of the coldest air I'd ever seen; The air was at ISA -25, and at Mach 2 our TAT was only about 85 deg's C. (You could feel the difference too; the cabin windows felt only warm-ish to the touch). The upside also of all this was that your fuel burn was much lower than usual. (The only downside of course is that your TAS is a little lower). Rolls Royce did some analysis on the flight, and were amazed at how well the propulsion systems coped with some of the temperature sheers that we encountered, sometimes 4 to 5 deg's/second. They said that the prototype AFCS had been defeated by rises of only 0.25 deg's/second ).
Not meaning to go off onto a (yet another) tangent; Negative temperature shears, very common at lower lattidudes, always plagued the development aircraft; you would suddenly accelerate, and in the case of a severe shear, would accelerate and accelerate!! (Your Mach number, quite naturaly, suddenly increased with the falling temperature of course, but because of the powerplant suddenly hitting an area of hyper-efficiencey, the A/C would physically accelerate rapidly, way beyond Mmo). Many modifications were tried to mitigate the effects of severe shears, in the end a clever change to the intake control unit software fixed it. (Thanks to this change the production series A/C would not be capable of level flight Mach numbers of any more than Mach 2.13, remembering that Mmo was set at 2.04).
There was one lovely story, involving the Shah of Iran, having one of MANY flights in a developmment aircraft. The aircraft encounterd quite a hefty series of temperature shears that plagued havoc with some Iranian F4's that were attempting to close on the Concorde, to act as an escort for the Shah. (or so the strory goes). I'm still trying to picture these F4's, on full afterburner trying to get close to a Concorde cruising away on dry power). It is said that the F4's were having such difficulties, due to their relatively crude powerplant, coping with the temperature changes, that the Concorde was ordered to slow down, 'so the escorting F4's could catch up'!! True or not, it is part of Concorde folklore.

Dude

Last edited by M2dude; 24th August 2010 at 14:31 . Reason: spelling (again) :-(

Subjects (links are to this post in the relevant subject page so that this post can be seen in context): AFCS (Automtic Flight Control System)  Afterburner/Re-heat  Boeing  British Airways  Captains  Fairford  G-AXDN  G-BOAD  G-BOAG  Mmo  TAS (True Air Speed)  TAT (Total Air Temperature)  Temperature Shear  Visor